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Emotions are a critical aspect of human behavior. One widely used technique for research in emotion measurement is based on the
use of EEG signals. In general terms, the first step of signal processing is the elimination of noise, which can be done in manual
or automatic terms. The next step is determining the feature vector using, for example, entropy calculation and its variations to
generate a classification model. It is possible to use this approach to classify theoretical models such as the Circumplex model.This
model proposes that emotions are distributed in a two-dimensional circular space. However, methods to determine the feature
vector are highly susceptible to noise that may exist in the signal. In this article, a new method to adjust the classifier is proposed
using metaheuristics based on the black hole algorithm. The method is aimed at obtaining results similar to those obtained with
manual noise elimination methods. In order to evaluate the proposed method, the MAHNOB HCI Tagging Database was used.
Results show that using the black hole algorithm to optimize the feature vector of the Support Vector Machine we obtained an
accuracy of 92.56% over 30 executions.

1. Introduction

Emotions play an important role regarding the way in which
people think and behave [1]. In physiological terms, emotions
are phenomena of short duration that represent efficient
modes of adaptation to the constant demands presented
by our environment [2]. One of the most accepted mod-
els that represent emotions is known as the Circumplex
model [3]. This model organizes emotions into points on a
bidimensional plane made up of the following dimensions:
“Valence” (pleasurable or not pleasurable) and “Arousal”
(tension, relaxation); in this way, emotions are organized in a
circular manner within this plane [3]. Furthermore, different
methods exist for measuring emotions within people; those
with the most precision are based on electrophysiological

signals, which can be captured, for example, by an electroen-
cephalogram (EEG) device.

In particular, the increase of the visual component P1
has been studied, with event-related potentials (ERP), by
filtering low spatial frequencies, thus evidencing the rapid
activation of the magnocellular system against stimuli that
trigger emotions of high agitation [4]. The component P1 is
of early onset and precedes facial recognition; therefore, it
is possible to estimate that emotional processing manages
to circumvent the track of regular visual processing when
emotions contained in the stimuli are of high agitation [5].
Furthermore, by means of a classifier generated from the
combination of wavelet entropy and the averaging of wavelets
of EEG signals associated with emotions, a valence of 76.8%
and an agitation of 74.3%have been recognized. Furthermore,
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the decoding of pleasurable or unpleasant emotions known as
valence [6] has been obtained through Linear Discriminant
Analysis. In this context and considering both the temporal
resolution of EEG signals and the possibility of applying
ecological tasks to subjects while registering signals, classi-
fication methods are a tool of great potential for the study of
emotions.

One of the metrics (features) that is the most represen-
tative and which provides the most information is entropy.
Entropy is a measurement of information or order; it mea-
sures the predictability of data. This is, given a set of ! data
elements, " = ⟨$1,$2, . . . ,$!⟩, entropy is the probability of
being able to predict an element $", i.e., the homogeneity or
heterogeneity of the data.

However, this use of entropy can magnify the signal
noise, being extremely sensitive to minimal variations. For
this reason, different ways of measuring entropy have been
proposed, such as approximate entropy, differential entropy,
or sample entropy. Among these methods, sample entropy
presents a valuable statistical consistency and for this reason
was utilized as a basis of comparison [7]. Sample entropy
(SampEn) is based on approximate entropy, which by means
of elimination of repeated information prevents the evalua-
tion of indeterminate logarithms and self-matching, which
can result in inconsistent and erroneous data and thus also
achieve a greater statistical consistency.

Although the SampEn method is highly accurate, it is
extremely sensitive to its input parameters. In fact, there is no
established consensus on the selection of parameters for small
data sets, especially for biological data [8]. Another problem
in the calculation of SampEn is that if the sampling space is
not significant, the built classifiers can produce values with
high levels of error.

These situations present the problem of finding or cal-
culating the most suitable value for entropy that allows
generating high performance classifiers.This task is complex
and can be seen as an optimization problem in itself. A
first approximation to a potential solution can be the use of
full-search algorithms to explore a tree of extremely large
potential solutions. However, these techniques are highly
costly and can lead to an unsuitable large amount of attempts
to find a solution. With this is mind, it is not possible to
propose complete techniques such as Backtracking or hybrid
ones such as Forward Checking.

On the other hand, recently, several approaches have
emerged, inspired by natural phenomena, that allow solv-
ing complex optimization and combinatorial problems in
reduced time periods [9–12]. These techniques have been
successful when the complexity of the problem is not linear,
given that they do not explore the solution tree in their
completeness.

In this article, we propose using an approximate opti-
mization approach to find the best values considering the
predictability of the classifier. The reason for the proposed
approach is the strong impact on the development of clas-
sifiers for emotion recognition based on electroencephalog-
raphy. The main idea is to use the black hole algorithm due
to its low cost, similar to the calculation of entropy. This
algorithm is inspired by the phenomena of black holes [13]

and will be used to build the classifier iteratively.This method
will improve and update the classifier according to its level
of performance: lower percentage of error will be associated
with better evaluation levels.

The present work is organized as follows: Theoretical
background is introduced in Section 2. In Section 3, we detail
the required resources to apply our approximation approach.
Section 4 illustrates the computational experiments including
a comparison with the results obtained using the traditional
calculationmethod. Finally, conclusions and future works are
described in Section 5.

2. Background

First, in Section 2.1 we present the theoretical model for the
classifications proposed by Russell that supports our work
[3]. In Section 2.2, we describe some components associated
with electroencephalography and their relationships with
emotions detection. Following, in Section 2.3, we present
the sample entropy, which is an alternative to entropy. This
method is the main component of the feature vector which
is classified by a Support Vector Machine (SVM).This model
is composed by a set of supervised learning algorithms and
they are described in Section 2.4. In Section 2.5 we expose
some techniques used for the EEG signals treatment. Finally,
in Section 2.6 we will present two relevant works detecting
emotions with EEG.

To conclude, our proposal consists of the preprocessing
of the signal (through EMD and sample entropy) for the
construction of an initial multiclass SVM classifier. Using
this classifier as a base, a population (group) of classifiers is
created, which are formed by groups of modified character-
istics coming from the initial characteristics and a random
variation relative to the error of the classifier.

Once this population is created, it is iterated through
the black hole metaheuristic, which continuously generates
and improves these characteristics in order to obtain distinct
classifiers; these classifiers are then evaluated, always, using
the original characteristics from the signal. Once all the itera-
tions are completed, the best classifier (historically speaking)
is chosen; this classifier is, finally, utilized. Figure 1 shows a
scheme of our proposal.

2.1.Theoretical Model for Emotion Classification. Circumplex
is one of the most used models for emotion classification [3].
This model is composed by two dimensions. One dimension
is known as the valence dimension, which varies from “neg-
ative valence” to “positive valence”. The second dimension
is called arousal, which varies from “low arousal” to “high
arousal”. A graphical representation of theCircumplexmodel
is presented in Figure 2.

There are variants of the Circumplex model in which
extra dimensions are added, such as domination or freedom
in a given situation [3]. However, it has been proven that this
dimension captures the believed consequences by the person
regarding emotion and not the emotion itself [14].

In this work, we have used a discrete quadrant division
to represent the greatest variation among emotional states.
This approach is optimal for classifying and obtaining fewer
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Figure 1: Proposed approach.
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Figure 2: Russell’s classification model [3, 14].

error rates.This is because they represent the greatest possible
distance between agitation and valence (the digital axes).
On the other hand, it would be possible to classify discrete
emotions; there would be a greater probability of erroneously
classifying nearby emotions in thismodel because theywould
represent lower variance values.

2.2. Electroencephalography. Electroencephalography is a
method of neurophysiological exploration that is based
on the registry of cerebral activity through sensors that
translate bioelectric activity into electrical current [15]. It
is a noninvasive method that allows the measurement of
voltage fluctuations that result from the ionic current of the
postsynaptic potentials of neurons.

EEG signals are usually classified by their frequency,
amplitude, shape, or electrode position. The EEG bands are& (lower than 4Hz), ' (between 4Hz and 7Hz), ( (8-15Hz), )
(16-31Hz), * (higher than 31Hz), and + (between 8 and 12Hz).
These bands describe several emotional states [16], although
there are alternative definitions for the bands. For example,
the Beta Band frequency rangemay begin at 12, 13, 14, or even
16 Hz as described in [17], where the ,- band is not even
defined.

Figure 3: EEG 10-20 system.

Even so, the position of sensors is standardized by the 10-
20 channel system, by which each position is described by a
combination of a letter and a number.The letter indicates the
brain region that may be represented as frontal (F), central
(C), temporal (T), occipital (O), or parietal (P) [18]. Even
numbers indicate positions at the right side of the brain, while
odd numbers indicate positions at the left side. The system
name refers to the use of 10%and 20%proportions to position
the electrodes in relation to four cardinal points: ears, nape
and nasion [19] (as shown in Figure 3).

There is also another positioning system named 10-10
system in which only the 10% proportion is used. In this
alternative system the same bands mentioned before are used
with the addition of other intermediate channels. In the case
of the lobes, letter combinations are created for the channels
between two regions, for example, FP for frontoparietal [20].

The assembly of the electrodes can be done by referencing
the electrodes or with a bipole method.The reference is made
with electrodes that generate a comparison link, generally
with an electrode positioned in A2 (the ear electrode) and
the bipole method is performed by recording the potential
differences between paired electrodes [21].

The applications of EEG are varied [22–26]. However,
its most known use is for clinical diagnosis [27]. In recent
years, however, its use has spread in the research of brain
functions associated with cognitive processes. One of the
most commonly used techniques is event-related potentials
(ERP) that allows the repeated measurement of ongoing
brain activity segments immediately after the presentation
of a stimulus. In this way, by averaging the segments it
is possible to measure the cerebral voltage associate with
the stimuli presented; i.e., by means of an analysis of time
amplitude, it is possible to associate components to the
stimuli [28]. It is also possible to analyze the oscillations
related to events in the frequency domain. This analysis can
be performed in the frequency domain with the analysis of
the spectral decomposition represented in power spectral
density of each trial through the Fourier transform. However,
the time variable with a Fourier transform applied to a series
of consecutive time windows or with a discrete Wavelet
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Transform Analysis can be included. The so-called rhythms
have gained popularity in the research of social neuroscience
and frequency bands (i.e., alpha) have been associated with
cognitive processes and mental states. Because of this and
because of the particular suitability for the investigation of
emotions, this study focused on frequency analysis.

2.3. Sample Entropy. Sample entropy is a variation of approx-
imate entropy (ApEn).This entropy reduces the potential bias
generated by self-matching that arises during ApEn [29].The

function of SampEn is the negative of the natural logarithmof
the conditional probability that two similar sequences, with a
distance of less than ., for , points, continue to be so when
increasing the number of points from, to (, + 1).This is to
say that the SampEn is calculated by/0,123 (,, .,!) = − ln(6#+1 (.)6# (.) ) (1)

where 6# is defined as

6# (.) = {number of all probable pairs (:, ;) with =====$#" − $#$ ===== < ., : ̸= ;}{number of all probable pairs, i.e. (! − , + 1) (! − ,)} (2)

where |$#" − $#$ | denotes the distance between the points$#" and $#$ in the dimension space to be evaluated, ,. The
variable . represents the tolerable standard deviation of the
time series. Furthermore,! represents the length of the time
series. Finally, it has been shown that SampEn has a better
statistical validity for , = 1 or 2 and the range of . in the
interval between 0.1 and 0.25.
2.4. Support Vector Machines. Support Vector Machines
(SVM) are a set of supervised learning algorithms based on
statistics learning theory [30]. SVMs put all features in n-
dimensional space (the number of dimensions of the feature
vector, 8 in this case) and adjust them to a defined kernel
space (Gaussian, polynomial, etc.). To build a multiclass
SVM, we use the one-against-all method. This technique
consists of constructing B∗(B−1)/2 binary classifiers (hyper-
planes), separating each class from another, and applying a
voting system [31].

The main advantage of using SVMs is that their model
can be generalized for nonlinear feature spaces. On the
other hand, weighted SVM, which is the method used in
this work, has a regularization parameter C that enables
accommodation to outliers and allows errors on the training
set.

2.5. Signal Processing Algorithms

2.5.1. Technique: Empirical Mode Decomposition. Empirical
Mode Decomposition (EMD) is a data-driven signal process-
ing and analysis technique [32].This technique breaks down
the signal into its basic components, similar to the creation of
harmonics (fundamental sinusoidal), but with the advantage
that each signal has frequencies and variable amplitudes,
obtaining more information in each component [33].

The main advantage of using this technique is that it
permits softening the signals and decreasing noise, which is
especially useful in physiological signals.

Each component fulfills 2 fundamental requirements:
(i) The number of endpoints and the number of crosses

by zero (zero-crossings) is equal or differs at the most
in 1.

(ii) The average between the top and bottom wrapper is
always zero at each point.

EMD generates a set of Intrinsic Mode Functions (IMF)
that allows obtaining the components of a signal with most
significance. The steps to define the set of functions are as
follows:

(1) Identify all of the local endpoints of the signal.
(2) Connect all local maximums using cubic spline inter-

polation to create a superior wrapper.
(3) Repeat the same process for the local minimums.
(4) Create a ,[$] signal, which is the average of both

wrappers.
(5) The first resulting signal is the original signal minus, (average) signal:

IMF [3] = $ [3] − , [3] (3)

(6) The remainder of the original signal is obtainedminus
the IMF; i.e.,. [3] = $ [3] − DEF1 [3] (4)

(7) If IMF satisfies the definition (the 2 basic require-
ments), it is accepted as a valid IMF; otherwise the
process is rejected and repeated using the remainder
as the original signal.

This continues until the stopping condition is met, which
can be a certain number of iterations or until the residue
contains no more than one endpoint.

2.5.2. Technique: Wavelet Transform. The use of wavelet
transformation for EEG signal classification was proposed
by [34]. To do this, the signal is decomposed in a set of
basic signals called wavelets.These signals are obtained from
a mother wavelet, which is a signal wavelet prototype that
was generated through dilatations, contractions, and signal
changes.The wavelet coefficients resulting from this analysis
represent similarity between the scaled/shifted wavelets and
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the original data. Despite the fact that this method of
analysis permits obtaining a higher temporal resolution than
the Fourier transform, the frequency resolution is lower in
the low frequencies. Also, in the high frequencies, when
the frequency resolution increases, the temporal resolution
decreases.

In spite of the mentioned limitations, the frequency
analysis of wavelet has been used, among other things, to
determine the intracortical coupling, unraveling cerebral
synchrony through the systems of communication between
near and distant neurons associated with cognitive processes
[35]. Likewise, the analysis of oscillations has been relevant
in the study of mirror neurons, which, according to some
authors, is the basis of empathy [36]. The rhythm Mu (+)
(8-12Hz) in the sensorimotor cortex, associated with the
system of mirror neurons, is more active when subjects are
at rest and it is desynchronized when an action is carried
out or an action is observed [37]. In this way, the study
of the synchronization of the oscillations has been of great
importance for the understanding of aspects such as empathy,
emotional reactions, and even social interactions [38].

2.5.3. Comparison: EMD versus Wavelet. EMD is an iterative
process that allows a transversal time-frequency analysis by
extracting the oscillatory characteristics. On the other hand,
the wavelet transform allows performing a longitudinal anal-
ysis of the frequency changes over time by convolving a signal
based on a mother wavelet. Particularly the EEG signals are
characterized by being non-Gaussian and nonstationary; due
to this, it has been observed that the wavelet transform has
a worst resolution of time and frequency while the EMD
provides a more intuitive understanding of the data [39].
In addition, the EMD does not have the need for arbitrary
bandpass filter cut-offs and the phase is detected independent
of the amplitude.

2.6. Relevant Works

2.6.1. Applications: WEAVE Algorithm. WEAVE is EEG-
emotion valence classifier based on five steps:

(1) Segmentation of EEG signals related to emotions in
windows of 6 seconds.

(2) Extraction of the wavelet metrics to formWEAVE.
(3) Calculating the complexity of metrics with Normal-

ized Mutual Information (NMI) [40].
(4) Reduction of channels through NMI.
(5) Classification with the Support Vector Machine

(SVM) algorithm using the SequentialMinimal Opti-
mization (SMO) algorithm to train the SVM.

The advantages of the wavelet transform are due to the
regularity in the intersegment estimation and the subbands
obtainment through the bandpass filter and the denoiser
signal decomposition [41].

2.6.2. EEG-Based Emotion Recognition Using Combined Fea-
ture Extraction Method. A state of excitement in the cerebral

cortex can be identified using the detection of a significant
Beta Band [42].This state is recognized as a favorable scenario
for emotion recognition [43, 44].

In [42], a method is proposed for the recognition of
emotions using Empirical Mode Decomposition (EMD) and
the sampled entropy for the generation of a classifier using
SVM. The main advantage of this method is that only 2
channels are used (F3 and C4). EMD is used on both signals
to calculate the first 4 IntrinsicMode Functions (IMFs). Each
of the 8 resulting IMFs is calculated with SampEn. Later,
this entropy is used for the characteristics vectors and to be
entered into the SVM for training and testing.

For the reconstruction of the Beta Band they used low
pass and high pass Butterworth filters. Signals were filtered
using a 3rd-order bandpass Butterworth filter [45] with a cut-
off frequency of 12.5 and 30 Hz and the resonant frequency
equal to 0.1Hz [46].

Furthermore, for the experiment, the Database for Emo-
tion Analysis using Physiological Signals (DEAP) was used
[47]. In general terms, the experimental results presented by
the authors indicate that the proposed method obtains an
accuracy of 94.98%for binary-class task and the best accuracy
achieves 93.20% for themulticlass task using DEAP database.
In this way, the results presented by the authors are highly
appropriate in relation to other means of classification. In the
Figure 4, we present a working schema of the proposed by
[42].

Upon analyzing, in detail, the process, we can see that the
entropy values strongly affect the creation of the classifier and
are directly related to the configuration of the input param-
eters. In addition, due to the search process is an iterative
procedure, it is not possible to determine the performance of
the classifier until the process is finished.

3. Materials and Methods

3.1. Dataset. For our proposal, presented in Section 3.3, we
used theMAHNOBHCI Tagging Database [48].This dataset
is formed by 563 sessions realized by 30 participants. Each
session contains data fromonly one person. Participants were
presented with movies and images with emotional content.
While they were being presented with the emotional content,
they were monitored with EEG of 32 channels, 6 cameras,
a microphone in the head (head-worn microphone), an eye
gaze tracker, and conductivity, among other sensors.

Furthermore, for each session, participants were asked
to answer a survey regarding emotions they felt, levels of
agitation, valence and domination, among other questions.
We used the agitation and valence (high, low) to create
the multilabelled classifier, where each of the four classes
is one of the quadrants. When using a multiclass model
for classification, the answer must be in one of the classes
contained in the model. To avoid the creation of a null class,
it is advisable to use the full spectrum of emotions. For this,
the Russell quadrant model was selected [3], which includes
all the possible emotions discretized in points.

For this study, we used the F3 and C4 channels of the
EEG sensor, as it was done in [42].These channels represent
part of the Beta Band, which is significant when the brain
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Figure 4: EEG-based emotion recognition using combined feature extraction method.

is in excited states [49], an ideal condition for recognizing
emotions. The activity of the Beta Band is clearer in the
frontal, temporal, and central areas, in regions such as F3,
F4, C3, C4, T3, and T4. For the selection of channels,
a reconstruction of the Beta Band was performed, and
the power spectral density (PSD) was calculated. Since the
average of PSD in the F3 and C4 was more significant, these
were chosen for the realization of this study.

3.2. ApproximateMethods. In optimization new approximate
techniques have been proposed in order to improve the
search process. Many of these algorithms are on inspired in
social environments, natural phenomena, and the biological
evolution [50]. These methods have widely been used to
solve uncountable optimization problems [51]. Swarm intel-
ligence is a particular case of metaheuristics that groups
a subset of algorithms and it allows solving optimization
problems using collective intelligence. For instance, social
situations and human behavior have inspired the imperialist
competitive algorithm [52] and the brainstorming algorithm
[53], respectively. Techniques based on single-solution such
as the intelligence water drop algorithm [54] have been
proposed. Moreover, approximate methods such as the ant
colony optimization algorithm [55] are population-based
using the collective intelligence of individuals. On the other
hand, techniques inspired by the collaborative behavior of
some animals have been proposed in [56–59], among others.
More sophistic techniques are inspired by spatial phenomena
such as the gravitational search algorithm [60], the black
hole algorithm [61], the big bang algorithm [62], and the big
bang-big crunch algorithm [63] and others. Finally, genetic
algorithms [64] and differential evolution [65] are two of

the best-known techniques inspired by the process of natural
selection.

3.3. Proposed Approach. To solve this problem, we propose to
use an approximate method that permits evaluating previous
behavior of the classifier, and if necessary, allowing for
improvement.The approximate techniques have been widely
used in real world problems [66, 67], being very useful when
the search space is extremely large and the use of complete
search algorithms is unfeasible. While there are many alter-
natives to solve this problem, we have decided using the
black hole algorithm due to the fact that it is relatively easy
to implement, and it is slight free from tuning parameter
issues. Moreover, this method uses a technique of explo-
ration/exploitation free of external components reducing the
probability of being affected to unexpected changes. Finally,
as reported in [68], the black hole algorithm in optimization
problem converges to global optimal in each evaluation while
its competitors’ genetic algorithm, ant colony optimization,
and simulated annealing can be caught in local optimum
solutions.

The black hole algorithm is based on the phenomenon of
the same name, which occurs in outer space and is inspired by
the law of attraction/absorption.The algorithm follows three
main fundamentals:

(1) A star in space is considered a solution to the problem.
As a population-based algorithm, a certain number of
stars are randomly generated.

(2) The black hole is selected. A black hole represents the
star with the best performance of all solutions.
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Require: number of stars (solutions) and stop criteria (maximum of iterations)
Ensure: the black hole. In our case, the best classifier.(1) produce the first generation of 3 stars in the search space.(2) select the best solution as black hole.(3) while a good enough solution has not been reached in a maximum of iterations do(4) for all star G", (∀: = 1, . . . , 3) do(5) evaluate classifier performance using cross-validation of data.(6) change the location of G" according to Eq.(5).(7) if G" is better than black hole then(8) select the current solution G" as black hole.(9) endif(10) {G" cross to the event horizon defined by Eq.(6)}(11) if . > I%ℎ/∑'"=1 I" then(12) replace G" with a new star in a random location in the search space.(13) endif(14) endfor(15) endwhile(16) return results and visualization.

Algorithm 1: Black hole algorithm.

(3) Themovement and generation of new stars are carried
out through the absorption formula:$(" (K + 1) = $(" (K) + ( [$(%ℎ − $(" (K)] , ∀: ∈ {1, . . . , 3} (5)

where $(" (K) corresponds to the Oth component of the :th
star in the iteration K, $(%ℎ is the Oth component of the
black hole in the search space, 3 represents the number of
solutions (number of stars), and ( is a random uniform
number of distribution between zero and one. Finally, $(" (K +1) corresponds to the Oth component of the location of the:th star in the next iteration.

The event horizon is a radius originated by the black
hole. In case a star crosses the horizon, it will be absorbed
and destroyed by the black hole and a new star (solution) is
created randomly.This is known as the probability of crossing
the event horizon and is calculated as follows:P = I%ℎ∑'"=1 I" (6)

where I%ℎ is the performance value that has the best solution,I" is the value associated with the quality of the :th star, and 3
is the number of stars (solutions).When the distance between
the black hole and the star is less than the radius then the star
crosses the event horizon. This star is absorbed and a new is
randomly generated. We highlight the variability offered by
event horizon that allows resolving the common and complex
problem of stagnation in local optimum.

One of the most interesting characteristics of incomplete
data processing algorithms is the approximation to good
solutions.This conceptmay be used as stop criteria. However,
in situations where the optimal solutions are not known a
priori, it is not possible to measure the quality of found
solutions. In these cases, possible stop criteria are the number
of executed iterations, for the sake of clarity of the proposed

algorithm. In our proposal, the stop criteria are initially set as
100 off-line iterations.

Algorithm 1 displays the optimization procedure. At
the beginning, the initial 3-star population is randomly
generated for each of the intrinsic signals and loop statement
begins working.

Randomness allows a degree of variability in the algo-
rithm.Then, in the loop statement, the process of absorption
of the algorithm is carried out. The quality of each solution
is calculated, determined by the performance exhibited by
the classifier. If the rating value is close to 1, the solution
is considered to have a high quality (see Line (11) of
Algorithm 1). Conversely, if the rating value is close to 0,
the solution is considered to exhibit low quality due to the
probability of crossing the event horizon is highest. The
solutions are generated by the absorption of stars by the
black hole that is presented in (5). Performing this process
generates a real number of predictability for each intrinsic
signal. If a star or solution reaches a value better than the
black hole, its locations are swapped. If a star crosses the event
horizon of the black hole, calculated by (6), it is absorbed and
generates a new one randomly.This comparison is performed
according to a random variable with uniform distribution. ∼ [0, 1].This whole procedure is done iteratively.

To measure the performance (quality) of the solutions, a
proportion given by (6) is used between the fitness of the star
and the combined value of all fitness (excluding that star).
This value is known as an event horizon. If this percentage
value is less than ., randomly generated, the star will be
absorbed.This nondeterministic process provides variability
to the solutions.

Finally, the loop statement ends when an adequate
enough solution is reached for our approach; this condition
is determined by updating the solution in a certain amount of
iterations. At the end, the best solutions are memorized and
visualized.
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Figure 5: Proposed method using black hole algorithm.

Figure 5 illustrates the integration of the black hole
algorithm into the process of creation of the classifier and
its subsequent evaluation. The process is described in a loop
way between the calculation of the predictability value and
the performance evaluation of the created classifier. This
approach allows improving the quality of the classifier, since
it is used during the run of the algorithm itself.

4. Computational Experiments

After applying the approximation approach,we have analyzed
the time complexity of the black hole algorithm into the
process of creating the classifier and we illustrate that our
proposal does not affect its performance. It can be determined
that time complexity of the SampEn is given byR((!2/2)(1−(1 − .)#)), where ! represents the size of the array data and, is the number of matches and is much smaller than N.
Finally, . represents the probability of two samples, S(:) andS(;) [69]. Now, by analyzing the approximate algorithm, it
can be observed that the time complexity is given by R(T!),
whereT is a constant and represents themaximumnumber of
iterations, while! is the size of population (stars). Although
the incorporation of an optimization algorithm based on
swarm intelligence can cause an increase in cyclomatic
complexity (19 to 39) [70], this only affects the training phase.
The classification phase, being subsequent to the search
process of the best configuration of the SVM (gamma and C
parameters), is not affected.

The performance of the black hole algorithm was exper-
imentally evaluated by using a set of well-known validated
signals using MAHNOB HCI Tagging Database [48].

The approximate approach has been implemented on the
programming language C# and the experiments [71–73] have
been executed on a 2.6 GHz Intel Core i7 with 16 GB RAM
machine running Windows 7. The initial parameter setting
used is detailed in Table 1.

Firstly, these parameter settings are adopted after a hard
initial training phase, being the one that obtained the best
results. Then, we considered previous works to compare the
choice of parameter values as reported in [24].

A common method to recognize the emotion based on
EEG signals uses the entropy factor to build the classifier. We
have implemented this technique and the accuracy obtained
was close to 84.77% producing an error of classification
outperform to 15%. That can be attributed to the sample
entropy that builds the classifier without iterating in order to
find the best solution.

Towards the end of iterations, the approximate optimiza-
tion method reaches an accuracy above to 93% illustrating
again that its performance is better than sample entropy
approach. All results are available in Appendix B.

Figure 6 illustrates clearly the robustness of our proposed
approach. Lower bound is given by the minimum accuracy
found. If we only analyze this point only, we can see that
immediately after the first iteration, the black hole algorithm
always reaches a better value than found by the sample
entropy method [42].
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Table 1: Parameter setting to the entropy and the black hole algorithm.

Section Component Description Value

Data selection
Number of sessions Emotion elicitation trials 563

Frequency Each second has 128 samples or values 128Hz

Frame To classify each frame it lasts 9 seconds, without overlapping 9 sec.

Sample entropy
! Number of samples 128 samples, Embedded dimension 2. Probability of similarity on two simultaneous datasets 0.15

Empirical Mode
Decomposition Order Number of IMFs 4

Black Hole Algorithm 3 Number of stars (solutions) 30T Maximum iterations 100

Miscellaneous – Runs of the approximate approach 30

– Number of used cores (processors) 8

Robustness of the approximate approach

Minimum Accuracy
Average Accuracy
Maximum Accuracy
Sample Entropy

20 40 60 80 1000
Iterations

84

86

88

90

92

Be
st 

va
lu

e

Figure 6: Convergence chart of the proposed method.

It is possible to conclude that the results are promising
compared to those obtained with other SVM classifiers built
by using the entropy factor. The proposed method used the
MAHNOB HCI Tagging Database and reached a maximum
accuracy level of 93.03%, with an average of 92.57%. Using
the same dataset, a standard approach using the entropy
factor to build a SVM classifier presents an average accuracy
of 84.77%. More details can be seen in Appendix A and
Appendix B.

This approach could be useful in emotion classification if
the research goal would be to obtain relevant information in
real time, for instance, incorporating an EEG in the classroom
[74, 75]. This process would involve building a classifier for
signal manipulation. The signal could be obtained online.

Also, preprocessing techniques that have a high computa-
tional cost were not used, such as signal normalization or eye
movement artifact cleaning using blind source separation.
Apart from the computational cost, these techniques require
a baseline signal previously recorded.

5. Conclusions and Future Works

Emotions have been subject to scientific research for more
than a century, as they play many essential roles in people’s
lives [76]. In this paper, we have presented a new method
based on an optimization approach for the building of
an SVM classifier for EEG-emotion signals. This approach
consists in applying the EMD method to decompose the
signal. Then, sampled entropy is applied on the first 4
components. Next, with these initial characteristics, the black
hole algorithm was used to optimize them and thus obtain
the best combination of the SVM feature vectors to generate
a higher accuracy.

EEG-emotion signals allow for the prediction and classi-
fication of data with automated noise reduction.The emotion
research is especially complex due to the ecological paradigm
requirement, specifically the trigger stimuli, and emotional
response generates high rate of noise. A common method
is detailed in the background section, using entropy as a
more relevant element. Nevertheless, results are not what was
expected, reaching 85% in accuracy only.

In order to improve these computational results, we
conducted an approximate method inspired on the black
hole phenomenon.This algorithm is proposed to analyze the
performance of an SVM classifier, allowing the extension of
emotion ecological paradigms with EEG data.

We have tested our technique using a validated emotion
signal, named MAHNOB HCI Tagging Database. Results
show that the optimization algorithm allows the SMV clas-
sifier to surpass 90% in accuracy in its first iterations, even
reaching 93%; furthermore, it is highly competitivewith those
presented in the related works section.
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Table 2: Computational results of the approximate approach.

It. Accuracy
Minimum Average Standard Deviation Maximum

1 85.34 87.45 1.18E+04 89.33
2 86.20 88.05 8.89E+03 89.61
3 87.43 88.84 6.67E+03 90.28
4 87.95 89.14 7.32E+03 91.18
5 87.95 89.61 1.10E+04 92.13
6 88.19 89.95 1.15E+04 92.13
7 88.47 90.26 1.13E+04 92.27
8 88.66 90.53 1.15E+04 92.46
9 89.09 90.81 1.05E+04 92.46
10 89.23 91.08 9.90E+03 92.50
11 89.52 91.23 9.35E+03 92.50
12 89.52 91.45 7.81E+03 92.55
13 89.56 91.53 7.74E+03 92.55
14 90.09 91.65 6.72E+03 92.55
15 90.09 91.70 6.37E+03 92.55
16 90.32 91.75 5.98E+03 92.60
17 90.42 91.80 5.61E+03 92.60
18 90.42 91.83 5.58E+03 92.60
19 90.65 91.87 5.43E+03 92.60
20 90.80 91.89 5.28E+03 92.60

Particularly, these results are compatible with those
obtained with the EEG-emotion signal with wavelet
entropy and Support Vector Machine classifier proposed by
Çelikkanat, but with higher accuracy [6].

As future works, we believe that using new approximate
optimization algorithms will allow us to find better results
to compare the SVM classifier performance. Moreover, we
intend to incorporate an autonomous version of these algo-
rithms so that the self-adaptive of its parameters is not
complex and suited to the instance of the problem, as
described in [9, 11].

On the other hand, we propose an integration of
autonomous search in the parameter settings process, in
order to find the best values during the run.This research can
lead towards new study lines.

Appendix

A. Summary of the Experimental Results

In Tables 2, 3, 4, 5, and 6, we show a summary of the compu-
tational results generated by using the approximate approach.
All computational results can be seen in Appendix B. Exe-
cuting the experiments, we can observe that the performance
of the optimization algorithm to find the best values for
building the SVM classifier was outperforming to entropy
approach. If we analyze the resolution process, we can see
that in the first ten iterations the black hole algorithm reaches
a minimum and average accuracy close to 90%. Finally, the

best value achieved is higher than 92%. In next iterations,
the robustness of algorithm is demonstrated, according to the
standard deviation values decrease as iterations occur.

B. Details of the Experimental Results

In Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18we illustrate
all computational results that we allow analyzing the perfor-
mance of the proposed mixed approach. These tables have
the same headers, which are described below: column 1
(Iterations) corresponds to the identifier assigned to each
iteration. Columns 2-11 (Runs) describe runs each iteration;
i.e., for instance, in row 10 (iteration 10) and column six
(run #5), of Table 7, we can see that our approach reaches an
accuracy of 90.56%.The same description can be used for the
other tables.

Data Availability

The software developed and the data generated to sup-
port the findings of this study have been deposited in the
Figshare repository (10.6084/m9.figshare.5588896, 10.6084/
m9.figshare.5588911, and 10.6084/m9.figshare.5590000.v2).
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Table 3: Computational results of the approximate approach (continuation).

It. Accuracy
Minimum Average Standard Deviation Maximum

21 90.99 91.95 4.94E+03 92.60
22 91.03 91.98 4.64E+03 92.60
23 91.13 92.01 4.48E+03 92.60
24 91.13 92.04 4.37E+03 92.79
25 91.13 92.05 4.41E+03 92.79
26 91.13 92.08 4.35E+03 92.79
27 91.13 92.09 4.33E+03 92.79
28 91.13 92.10 4.27E+03 92.79
29 91.13 92.12 4.27E+03 92.84
30 91.13 92.14 4.17E+03 92.84
31 91.13 92.16 4.15E+03 92.93
32 91.18 92.17 4.13E+03 92.93
33 91.22 92.18 4.08E+03 92.93
34 91.27 92.19 4.12E+03 92.93
35 91.32 92.21 3.99E+03 92.93
36 91.32 92.23 3.91E+03 92.93
37 91.56 92.25 3.67E+03 92.93
38 91.56 92.26 3.53E+03 92.93
39 91.56 92.28 3.53E+03 92.98
40 91.56 92.29 3.52E+03 92.98

Table 4: Computational results of the approximate approach (continuation).

It. Accuracy
Minimum Average Standard Deviation Maximum

41 91.56 92.31 3.40E+03 92.98
42 91.56 92.32 3.29E+03 92.98
43 91.56 92.34 3.29E+03 92.98
44 91.56 92.34 3.27E+03 92.98
45 91.65 92.36 3.11E+03 92.98
46 91.84 92.39 2.78E+03 92.98
47 91.84 92.40 2.82E+03 92.98
48 91.84 92.40 2.81E+03 92.98
49 91.84 92.41 2.82E+03 92.98
50 91.84 92.42 2.84E+03 92.98
51 91.84 92.42 2.88E+03 93.03
52 91.94 92.44 2.72E+03 93.03
53 91.94 92.44 2.75E+03 93.03
54 91.94 92.44 2.73E+03 93.03
55 91.94 92.45 2.76E+03 93.03
56 91.94 92.46 2.84E+03 93.03
57 91.94 92.47 2.84E+03 93.03
58 91.94 92.47 2.79E+03 93.03
59 91.94 92.48 2.80E+03 93.03
60 91.94 92.49 2.74E+03 93.03
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Table 5: Computational results of the approximate approach (continuation).

It. Accuracy
Minimum Average Standard Deviation Maximum

61 91.94 92.49 2.74E+03 93.03
62 91.94 92.49 2.70E+03 93.03
63 91.94 92.50 2.68E+03 93.03
64 91.94 92.50 2.70E+03 93.03
65 91.94 92.50 2.70E+03 93.03
66 91.94 92.51 2.65E+03 93.03
67 91.94 92.51 2.60E+03 93.03
68 91.94 92.51 2.61E+03 93.03
69 91.94 92.52 2.60E+03 93.03
70 91.94 92.52 2.59E+03 93.03
71 91.94 92.52 2.59E+03 93.03
72 91.94 92.53 2.59E+03 93.03
73 91.94 92.53 2.59E+03 93.03
74 91.94 92.53 2.61E+03 93.03
75 91.94 92.53 2.62E+03 93.03
76 91.94 92.53 2.62E+03 93.03
77 91.98 92.53 2.59E+03 93.03
78 91.98 92.53 2.61E+03 93.03
79 91.98 92.54 2.58E+03 93.03
80 91.98 92.54 2.58E+03 93.03

Table 6: Computational results of the approximate approach (final).

It. Accuracy
Minimum Average Standard Deviation Maximum

81 91.98 92.54 2.59E+03 93.03
82 91.98 92.54 2.59E+03 93.03
83 91.98 92.54 2.59E+03 93.03
84 91.98 92.54 2.58E+03 93.03
85 91.98 92.54 2.55E+03 93.03
86 91.98 92.55 2.57E+03 93.03
87 91.98 92.55 2.55E+03 93.03
88 91.98 92.55 2.55E+03 93.03
89 91.98 92.55 2.55E+03 93.03
90 92.03 92.55 2.51E+03 93.03
91 92.08 92.55 2.48E+03 93.03
92 92.08 92.56 2.49E+03 93.03
93 92.08 92.56 2.49E+03 93.03
94 92.08 92.56 2.49E+03 93.03
95 92.08 92.56 2.49E+03 93.03
96 92.13 92.56 2.43E+03 93.03
97 92.13 92.56 2.43E+03 93.03
98 92.13 92.56 2.41E+03 93.03
99 92.13 92.57 2.41E+03 93.03
100 92.13 92.57 2.41E+03 93.03
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Table 7: Dataset of experimental results. Twenty-five first iterations of the ten first runs.

Iterations Runs
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

1 88.24 88.57 87.95 89.04 86.48 88.05 86.15 87.33 88.85 86.95
2 88.76 88.57 88.14 89.04 86.48 88.05 87.43 87.33 89.61 88.24
3 89.28 89.52 88.76 89.04 87.43 88.43 89.18 88.66 90.28 88.47
4 91.18 89.52 89.23 89.04 88.43 88.61 89.47 88.9 90.28 89.23
5 91.18 91.08 90.42 89.47 88.61 89.33 90.04 88.9 92.13 89.8
6 91.46 91.08 91.41 90.32 88.61 89.37 91.32 89.14 92.13 90.23
7 91.46 91.37 91.46 90.32 89.04 89.37 91.46 89.47 92.27 90.37
8 91.75 91.46 92.46 90.61 89.47 89.37 91.98 89.47 92.27 90.56
9 91.84 91.46 92.46 90.94 90.09 89.61 91.98 90.32 92.31 91.51
10 91.89 91.94 92.5 90.94 90.56 90.42 92.13 90.7 92.31 91.51
11 91.94 91.94 92.5 90.94 91.03 90.42 92.13 90.75 92.31 91.51
12 91.98 91.98 92.5 90.94 91.46 90.75 92.22 91.37 92.31 91.51
13 91.98 92.13 92.55 90.94 91.46 90.8 92.22 91.6 92.31 91.6
14 91.98 92.31 92.55 90.94 91.65 91.13 92.22 91.6 92.31 91.6
15 91.98 92.31 92.55 90.99 91.7 91.13 92.22 91.75 92.31 91.6
16 92.03 92.36 92.6 91.03 91.75 91.13 92.22 91.75 92.36 91.6
17 92.03 92.46 92.6 91.08 91.98 91.13 92.22 91.75 92.36 91.6
18 92.13 92.46 92.6 91.08 91.98 91.13 92.22 91.75 92.41 91.7
19 92.13 92.46 92.6 91.08 91.98 91.13 92.22 91.75 92.5 91.7
20 92.17 92.46 92.6 91.22 91.98 91.13 92.22 91.79 92.5 91.89
21 92.17 92.46 92.6 91.37 92.03 91.13 92.22 91.98 92.5 91.89
22 92.17 92.46 92.6 91.37 92.03 91.13 92.22 91.98 92.5 91.89
23 92.17 92.46 92.6 91.37 92.13 91.13 92.31 92.13 92.5 91.89
24 92.17 92.5 92.6 91.51 92.13 91.13 92.31 92.13 92.5 91.89
25 92.27 92.5 92.6 91.51 92.13 91.13 92.36 92.13 92.5 91.89

Table 8: Dataset of experimental results. Twenty-five second iterations of the ten first runs.

Iterations Runs
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

26 92.27 92.5 92.6 91.51 92.31 91.13 92.41 92.13 92.5 91.89
27 92.27 92.5 92.6 91.51 92.31 91.13 92.46 92.13 92.5 91.89
28 92.27 92.5 92.6 91.51 92.31 91.18 92.55 92.13 92.5 91.89
29 92.27 92.5 92.6 91.56 92.46 91.18 92.55 92.13 92.5 91.89
30 92.27 92.5 92.6 91.56 92.46 91.18 92.65 92.13 92.5 91.94
31 92.27 92.5 92.6 91.56 92.46 91.27 92.65 92.17 92.5 91.94
32 92.27 92.5 92.6 91.56 92.5 91.27 92.65 92.22 92.5 91.98
33 92.27 92.5 92.6 91.56 92.5 91.27 92.65 92.27 92.5 91.98
34 92.27 92.5 92.6 91.56 92.65 91.27 92.69 92.41 92.5 92.03
35 92.27 92.5 92.6 91.56 92.79 91.32 92.69 92.41 92.5 92.13
36 92.27 92.5 92.6 91.56 92.88 91.32 92.69 92.41 92.5 92.17
37 92.27 92.5 92.6 91.56 92.88 91.6 92.69 92.41 92.5 92.17
38 92.27 92.5 92.6 91.56 92.88 91.6 92.69 92.41 92.5 92.17
39 92.27 92.5 92.6 91.56 92.98 91.6 92.69 92.41 92.5 92.17
40 92.27 92.5 92.6 91.56 92.98 91.6 92.69 92.41 92.5 92.27
41 92.27 92.5 92.6 91.56 92.98 91.6 92.69 92.41 92.5 92.36
42 92.27 92.5 92.6 91.56 92.98 91.65 92.69 92.41 92.5 92.5
43 92.27 92.5 92.6 91.56 92.98 91.65 92.69 92.41 92.5 92.5
44 92.27 92.5 92.6 91.56 92.98 91.65 92.69 92.41 92.5 92.5
45 92.27 92.5 92.6 91.7 92.98 91.65 92.69 92.41 92.5 92.5
46 92.27 92.5 92.6 91.89 92.98 91.84 92.69 92.41 92.5 92.5
47 92.27 92.5 92.6 91.89 92.98 91.84 92.69 92.41 92.5 92.5
48 92.27 92.5 92.6 91.89 92.98 91.84 92.69 92.41 92.5 92.5
49 92.27 92.5 92.6 91.89 92.98 91.84 92.69 92.41 92.5 92.5
50 92.31 92.5 92.6 91.94 92.98 91.84 92.69 92.41 92.5 92.55
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Table 9: Dataset of experimental results. Twenty-five third iterations of the ten first runs.

Iterations Runs
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

51 92.31 92.5 92.6 91.94 93.03 91.84 92.69 92.41 92.5 92.6
52 92.31 92.5 92.6 91.94 93.03 92.17 92.69 92.41 92.5 92.65
53 92.31 92.5 92.6 91.94 93.03 92.17 92.69 92.41 92.5 92.65
54 92.31 92.5 92.6 91.94 93.03 92.17 92.69 92.41 92.5 92.65
55 92.31 92.5 92.6 91.94 93.03 92.17 92.69 92.41 92.5 92.65
56 92.31 92.5 92.6 91.94 93.03 92.22 92.69 92.41 92.5 92.65
57 92.31 92.5 92.6 91.94 93.03 92.22 92.69 92.41 92.5 92.65
58 92.31 92.5 92.6 91.94 93.03 92.22 92.69 92.41 92.5 92.69
59 92.31 92.5 92.6 91.94 93.03 92.22 92.69 92.41 92.5 92.69
60 92.31 92.5 92.6 91.94 93.03 92.27 92.69 92.41 92.55 92.69
61 92.31 92.5 92.6 91.94 93.03 92.27 92.69 92.41 92.55 92.69
62 92.31 92.5 92.6 92.03 93.03 92.27 92.69 92.41 92.55 92.69
63 92.31 92.5 92.6 92.03 93.03 92.31 92.69 92.41 92.55 92.69
64 92.31 92.5 92.6 92.03 93.03 92.31 92.69 92.41 92.55 92.69
65 92.31 92.5 92.6 92.03 93.03 92.31 92.69 92.41 92.55 92.69
66 92.31 92.5 92.6 92.08 93.03 92.31 92.69 92.41 92.55 92.69
67 92.31 92.5 92.6 92.13 93.03 92.31 92.69 92.41 92.55 92.69
68 92.31 92.5 92.6 92.13 93.03 92.31 92.69 92.41 92.55 92.69
69 92.31 92.5 92.6 92.13 93.03 92.31 92.69 92.41 92.55 92.69
70 92.31 92.5 92.6 92.13 93.03 92.36 92.69 92.41 92.55 92.69
71 92.31 92.5 92.6 92.13 93.03 92.36 92.69 92.41 92.55 92.69
72 92.31 92.5 92.6 92.13 93.03 92.36 92.69 92.41 92.55 92.69
73 92.31 92.5 92.6 92.13 93.03 92.36 92.69 92.41 92.55 92.69
74 92.31 92.5 92.6 92.13 93.03 92.36 92.69 92.41 92.55 92.69
75 92.31 92.5 92.6 92.13 93.03 92.36 92.69 92.41 92.55 92.69

Table 10: Dataset of experimental results. Twenty-five fourth iterations of the ten first runs.

Iterations Runs
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

76 92.31 92.5 92.6 92.13 93.03 92.36 92.69 92.41 92.55 92.69
77 92.31 92.5 92.6 92.13 93.03 92.36 92.69 92.41 92.55 92.69
78 92.31 92.5 92.6 92.13 93.03 92.36 92.69 92.41 92.55 92.69
79 92.31 92.5 92.6 92.13 93.03 92.41 92.69 92.41 92.55 92.69
80 92.31 92.5 92.6 92.13 93.03 92.41 92.69 92.41 92.55 92.69
81 92.31 92.5 92.6 92.13 93.03 92.41 92.69 92.41 92.55 92.69
82 92.31 92.5 92.6 92.13 93.03 92.46 92.69 92.41 92.55 92.69
83 92.31 92.5 92.6 92.13 93.03 92.46 92.69 92.41 92.55 92.69
84 92.31 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
85 92.31 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
86 92.31 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
87 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
88 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
89 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
90 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
91 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
92 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
93 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
94 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
95 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
96 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
97 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
98 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
99 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55 92.69
100 92.41 92.5 92.6 92.13 93.03 92.46 92.69 92.46 92.55
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Table 11: Dataset of experimental results. Twenty-five first iterations of the ten second runs.

Iterations Runs
#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

1 86.86 87 85.91 87.86 88.52 88.28 88.43 85.39 86.39 86.2
2 87.57 88.28 88.24 87.86 88.52 88.28 88.52 86.48 87.9 86.2
3 88.57 88.95 88.43 89.71 88.52 89.14 88.71 88.9 88.09 87.95
4 88.85 88.95 88.8 89.75 88.66 89.14 88.8 88.9 88.57 87.95
5 89.14 89.71 88.8 90.09 89.28 89.14 88.8 88.9 89.42 87.95
6 89.28 90.51 88.8 90.09 90.51 89.94 88.8 89.33 90.37 88.19
7 89.52 90.51 89.42 91.94 91.37 90.04 89.28 89.33 90.51 88.47
8 89.71 90.8 89.42 91.94 91.37 90.18 89.37 89.33 91.27 90.04
9 89.94 90.84 89.42 92.13 91.37 90.94 89.9 89.33 91.27 90.56
10 90.37 91.08 89.52 92.46 91.79 91.84 89.9 89.42 91.27 90.89
11 90.56 91.18 89.52 92.46 91.79 91.84 90.04 89.52 91.75 90.89
12 91.27 91.51 89.56 92.55 91.79 91.84 91.22 89.52 91.84 90.89
13 91.27 91.56 89.56 92.55 91.79 91.89 91.22 89.66 91.94 90.89
14 91.27 91.7 90.56 92.55 91.84 91.89 91.7 90.09 92.13 90.89
15 91.37 91.75 91.13 92.55 91.84 91.89 91.7 90.09 92.13 90.99
16 91.51 91.75 91.13 92.55 91.84 91.89 91.7 90.42 92.13 90.99
17 91.6 91.79 91.18 92.55 91.84 91.89 91.79 90.42 92.13 90.99
18 91.6 91.79 91.18 92.55 91.89 91.89 91.79 90.42 92.13 90.99
19 91.7 91.79 91.37 92.55 92.08 91.94 91.79 90.65 92.13 90.99
20 91.7 91.79 91.37 92.6 92.08 91.94 91.79 90.8 92.17 90.99
21 91.75 91.79 91.6 92.6 92.08 91.94 91.89 91.03 92.17 90.99
22 91.79 91.84 91.6 92.6 92.08 91.94 91.94 91.56 92.17 91.03
23 91.79 91.84 91.65 92.6 92.22 91.94 91.94 91.56 92.17 91.27
24 91.79 91.94 91.65 92.6 92.22 91.94 91.94 91.6 92.17 91.41
25 91.79 91.94 91.65 92.6 92.22 91.94 91.94 91.6 92.17 91.41

Table 12: Dataset of experimental results. Twenty-five second iterations of the ten second runs.

Iterations Runs
#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

26 91.79 91.94 91.65 92.6 92.22 91.94 91.94 91.98 92.17 91.41
27 91.79 91.94 91.65 92.6 92.22 91.94 91.94 91.98 92.17 91.41
28 91.79 91.94 91.75 92.6 92.22 91.98 91.94 92.03 92.17 91.41
29 91.84 91.94 91.79 92.6 92.22 91.98 91.94 92.03 92.17 91.41
30 91.84 91.94 91.89 92.6 92.22 92.03 91.94 92.08 92.17 91.65
31 91.84 91.94 91.89 92.6 92.22 92.03 91.94 92.17 92.17 91.65
32 91.84 91.94 91.89 92.6 92.22 92.03 91.94 92.27 92.17 91.65
33 91.84 91.94 91.94 92.6 92.22 92.03 91.94 92.27 92.17 91.65
34 91.84 91.94 91.94 92.6 92.22 92.08 91.94 92.27 92.17 91.65
35 91.84 91.94 91.94 92.6 92.22 92.08 91.94 92.27 92.17 91.7
36 91.89 91.94 91.94 92.6 92.22 92.13 91.94 92.27 92.17 91.7
37 91.89 91.94 91.94 92.6 92.27 92.17 91.98 92.31 92.17 91.75
38 91.89 91.94 91.94 92.6 92.27 92.22 92.08 92.36 92.17 91.75
39 91.89 91.94 91.94 92.69 92.27 92.22 92.17 92.36 92.17 91.94
40 91.89 91.94 91.94 92.69 92.27 92.27 92.17 92.36 92.17 91.94
41 91.89 91.94 91.94 92.74 92.27 92.36 92.17 92.36 92.17 92.13
42 92.03 91.94 91.98 92.74 92.27 92.36 92.31 92.36 92.17 92.13
43 92.03 91.94 91.98 92.74 92.27 92.36 92.41 92.36 92.17 92.17
44 92.08 91.94 91.98 92.74 92.27 92.36 92.5 92.36 92.17 92.17
45 92.08 91.94 92.03 92.74 92.27 92.36 92.5 92.36 92.17 92.27
46 92.27 91.94 92.03 92.74 92.27 92.36 92.5 92.36 92.22 92.46
47 92.27 91.94 92.03 92.84 92.27 92.36 92.5 92.36 92.22 92.55
48 92.27 91.94 92.03 92.84 92.27 92.41 92.5 92.36 92.31 92.55
49 92.27 91.94 92.03 92.84 92.27 92.41 92.5 92.36 92.31 92.6
50 92.27 91.94 92.03 92.84 92.27 92.46 92.5 92.36 92.36 92.79
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Table 13: Dataset of experimental results. Twenty-five third iterations of the ten second runs.

Iterations Runs
#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

51 92.27 91.94 92.03 92.84 92.27 92.46 92.5 92.36 92.36 92.79
52 92.27 91.94 92.03 92.84 92.27 92.5 92.5 92.36 92.36 92.79
53 92.27 91.94 92.03 92.84 92.27 92.5 92.5 92.36 92.46 92.84
54 92.27 91.94 92.08 92.84 92.27 92.5 92.5 92.36 92.5 92.84
55 92.31 91.94 92.08 92.84 92.27 92.55 92.5 92.36 92.69 92.84
56 92.31 91.94 92.08 92.88 92.27 92.55 92.5 92.36 92.74 92.93
57 92.31 91.94 92.13 92.93 92.27 92.55 92.5 92.41 92.74 92.93
58 92.36 91.94 92.13 92.93 92.27 92.55 92.5 92.41 92.74 92.93
59 92.36 91.94 92.13 92.93 92.27 92.55 92.5 92.41 92.79 92.93
60 92.36 91.94 92.13 92.93 92.27 92.55 92.5 92.41 92.79 92.93
61 92.36 91.94 92.13 92.93 92.27 92.55 92.5 92.41 92.79 92.93
62 92.36 91.94 92.13 92.93 92.27 92.55 92.5 92.41 92.84 92.93
63 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.41 92.84 92.93
64 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.41 92.88 92.93
65 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.41 92.88 92.93
66 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.46 92.88 92.93
67 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.46 92.88 92.93
68 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.46 92.88 92.93
69 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.5 92.88 92.93
70 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.5 92.88 92.93
71 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
72 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
73 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
74 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
75 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93

Table 14: Dataset of experimental results. Twenty-five fourth iterations of the ten second runs.

Iterations Runs
#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

76 92.41 91.94 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
77 92.41 91.98 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
78 92.41 91.98 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
79 92.41 91.98 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
80 92.41 91.98 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
81 92.41 91.98 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
82 92.41 91.98 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
83 92.41 91.98 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
84 92.41 91.98 92.13 92.93 92.27 92.55 92.5 92.55 92.88 92.93
85 92.41 91.98 92.17 92.93 92.27 92.55 92.5 92.55 92.88 92.93
86 92.46 91.98 92.17 92.93 92.27 92.55 92.5 92.55 92.93 92.93
87 92.46 91.98 92.17 92.93 92.27 92.55 92.5 92.55 92.93 92.93
88 92.46 91.98 92.17 92.93 92.27 92.55 92.5 92.55 92.93 92.93
89 92.46 91.98 92.17 92.93 92.27 92.55 92.5 92.55 92.93 92.93
90 92.46 92.03 92.17 92.93 92.27 92.55 92.5 92.55 92.93 92.93
91 92.46 92.08 92.17 92.93 92.27 92.55 92.5 92.55 92.93 92.93
92 92.46 92.08 92.17 92.93 92.27 92.55 92.5 92.65 92.93 92.93
93 92.46 92.08 92.17 92.93 92.27 92.55 92.5 92.65 92.93 92.93
94 92.46 92.08 92.17 92.93 92.27 92.55 92.5 92.65 92.93 92.93
95 92.46 92.08 92.17 92.93 92.27 92.55 92.5 92.65 92.93 92.93
96 92.46 92.17 92.17 92.93 92.31 92.55 92.5 92.65 92.93 92.93
97 92.46 92.17 92.17 92.93 92.31 92.55 92.5 92.65 92.93 92.93
98 92.46 92.17 92.17 92.93 92.36 92.55 92.5 92.65 92.93 92.93
99 92.46 92.17 92.17 92.93 92.41 92.55 92.5 92.65 92.93 92.93
100 92.46 92.17 92.17 92.93 92.41 92.55 92.5 92.65 92.93 92.93



Computational Intelligence and Neuroscience 17

Table 15: Dataset of experimental results. Twenty-five first iterations of the ten third runs.

Iterations Runs
#21 #22 #23 #24 #25 #26 #27 #28 #29 #30

1 85.34 87.81 89.33 88.14 87.95 87.76 88.85 88.66 86.2 86.39
2 86.67 88.95 89.33 88.14 87.95 87.76 89.61 88.66 87.81 88.33
3 88.14 88.95 89.71 88.61 87.95 89.66 90.28 88.66 88.8 88.61
4 88.47 88.95 90.51 90.04 88.33 89.66 90.28 88.8 88.85 88.66
5 88.61 88.95 91.94 90.04 88.52 89.66 92.13 88.85 89.28 88.8
6 88.66 88.95 91.98 90.04 88.61 90.32 92.13 88.9 89.37 88.99
7 88.66 89.04 92.03 90.56 89.47 90.32 92.27 89.47 90.23 88.99
8 88.66 89.33 92.17 91.18 89.75 90.56 92.27 89.47 90.84 88.99
9 89.47 89.66 92.17 91.89 90.04 91.46 92.31 89.75 91.13 89.09
10 89.47 90.04 92.17 91.89 91.03 91.46 92.31 90.32 91.13 89.23
11 89.61 91.6 92.17 92.13 91.08 91.46 92.31 90.42 91.7 89.56
12 90.89 91.6 92.17 92.17 91.13 91.46 92.31 90.89 91.84 90.09
13 90.89 91.84 92.17 92.31 91.32 91.6 92.31 91.79 91.84 90.09
14 90.89 92.08 92.22 92.31 91.32 91.6 92.31 91.98 91.84 90.09
15 90.99 92.08 92.22 92.36 91.37 91.79 92.31 91.98 91.89 90.09
16 90.99 92.08 92.22 92.36 91.46 91.98 92.36 92.17 91.94 90.32
17 91.13 92.27 92.22 92.36 91.46 91.98 92.36 92.17 91.94 90.8
18 91.13 92.27 92.22 92.36 91.46 92.27 92.41 92.17 91.94 91.03
19 91.13 92.46 92.22 92.36 91.46 92.27 92.5 92.22 91.94 91.08
20 91.13 92.46 92.22 92.36 91.56 92.27 92.5 92.27 91.94 91.08
21 91.13 92.5 92.22 92.36 92.03 92.27 92.5 92.27 91.94 91.08
22 91.13 92.55 92.22 92.36 92.03 92.27 92.5 92.31 91.94 91.13
23 91.13 92.6 92.22 92.41 92.08 92.27 92.5 92.31 91.94 91.27
24 91.13 92.79 92.27 92.46 92.08 92.27 92.5 92.31 91.94 91.41
25 91.13 92.79 92.27 92.46 92.17 92.27 92.5 92.36 91.94 91.41

Table 16: Dataset of experimental results. Twenty-five second iterations of the ten third runs.

Iterations Runs
#21 #22 #23 #24 #25 #26 #27 #28 #29 #30

26 91.13 92.79 92.31 92.5 92.17 92.27 92.5 92.36 91.94 91.51
27 91.13 92.79 92.31 92.5 92.17 92.27 92.5 92.46 91.94 91.65
28 91.13 92.79 92.31 92.5 92.17 92.27 92.5 92.46 91.94 91.7
29 91.13 92.84 92.31 92.5 92.17 92.27 92.5 92.5 91.94 91.79
30 91.13 92.84 92.31 92.5 92.31 92.31 92.5 92.5 91.98 91.79
31 91.13 92.93 92.36 92.5 92.36 92.36 92.5 92.5 91.98 91.84
32 91.18 92.93 92.36 92.5 92.36 92.36 92.5 92.5 91.98 91.84
33 91.22 92.93 92.36 92.5 92.41 92.36 92.5 92.5 91.98 91.84
34 91.27 92.93 92.36 92.5 92.46 92.36 92.5 92.5 91.98 91.89
35 91.41 92.93 92.36 92.5 92.46 92.36 92.5 92.5 91.98 91.98
36 91.56 92.93 92.36 92.5 92.5 92.36 92.5 92.5 91.98 92.08
37 91.56 92.93 92.36 92.5 92.5 92.36 92.5 92.5 91.98 92.13
38 91.75 92.93 92.36 92.5 92.5 92.36 92.5 92.5 91.98 92.13
39 91.75 92.93 92.36 92.5 92.5 92.36 92.5 92.55 92.08 92.13
40 91.75 92.93 92.36 92.5 92.5 92.36 92.5 92.55 92.08 92.17
41 91.89 92.93 92.36 92.5 92.5 92.36 92.5 92.55 92.13 92.17
42 91.89 92.93 92.36 92.5 92.5 92.36 92.5 92.55 92.13 92.17
43 91.89 92.93 92.36 92.5 92.5 92.36 92.5 92.55 92.17 92.17
44 91.89 92.93 92.36 92.5 92.5 92.36 92.5 92.55 92.27 92.17
45 91.94 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.36 92.17
46 91.94 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.41 92.17
47 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.41 92.17
48 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.17
49 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.17
50 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.17
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Table 17: Dataset of experimental results. Twenty-five third iterations of the ten third runs.

Iterations Runs
#21 #22 #23 #24 #25 #26 #27 #28 #29 #30

51 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.17
52 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.17
53 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.17
54 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.17
55 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.17
56 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.17
57 91.98 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.17
58 92.03 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.22
59 92.03 92.93 92.36 92.5 92.5 92.41 92.5 92.55 92.5 92.27
60 92.08 92.93 92.36 92.5 92.5 92.41 92.55 92.55 92.5 92.41
61 92.08 92.93 92.36 92.5 92.5 92.41 92.55 92.55 92.5 92.41
62 92.08 92.93 92.36 92.5 92.5 92.41 92.55 92.55 92.5 92.41
63 92.08 92.93 92.36 92.5 92.5 92.41 92.55 92.55 92.5 92.41
64 92.08 92.93 92.36 92.5 92.5 92.41 92.55 92.55 92.5 92.41
65 92.08 92.93 92.36 92.5 92.5 92.41 92.55 92.55 92.5 92.41
66 92.13 92.93 92.36 92.5 92.5 92.41 92.55 92.55 92.5 92.6
67 92.17 92.93 92.36 92.5 92.55 92.41 92.55 92.55 92.5 92.6
68 92.17 92.93 92.36 92.5 92.55 92.41 92.55 92.55 92.5 92.65
69 92.22 92.93 92.36 92.5 92.6 92.41 92.55 92.55 92.5 92.69
70 92.22 92.93 92.36 92.5 92.6 92.41 92.55 92.55 92.5 92.69
71 92.22 92.93 92.36 92.5 92.6 92.41 92.55 92.55 92.5 92.69
72 92.22 92.93 92.36 92.5 92.65 92.41 92.55 92.55 92.5 92.69
73 92.22 92.93 92.36 92.5 92.65 92.41 92.55 92.55 92.5 92.69
74 92.22 92.93 92.36 92.5 92.65 92.41 92.55 92.55 92.5 92.74
75 92.22 92.93 92.36 92.5 92.65 92.41 92.55 92.55 92.5 92.79

Table 18: Dataset of experimental results. Twenty-five fourth iterations of the ten third runs.

Iterations Runs
#21 #22 #23 #24 #25 #26 #27 #28 #29 #30

76 92.22 92.93 92.36 92.5 92.65 92.41 92.55 92.55 92.5 92.79
77 92.22 92.93 92.36 92.5 92.65 92.41 92.55 92.55 92.5 92.79
78 92.22 92.93 92.36 92.5 92.74 92.41 92.55 92.55 92.5 92.79
79 92.27 92.93 92.36 92.5 92.74 92.41 92.55 92.55 92.5 92.79
80 92.27 92.93 92.36 92.5 92.74 92.41 92.55 92.55 92.5 92.79
81 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
82 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
83 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
84 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
85 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
86 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
87 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
88 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
89 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
90 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
91 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
92 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
93 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
94 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
95 92.27 92.93 92.36 92.5 92.79 92.41 92.55 92.55 92.5 92.79
96 92.27 92.93 92.36 92.5 92.84 92.41 92.55 92.55 92.5 92.79
97 92.27 92.93 92.36 92.5 92.84 92.41 92.55 92.55 92.5 92.79
98 92.27 92.93 92.36 92.5 92.84 92.41 92.55 92.55 92.5 92.79
99 92.27 92.93 92.36 92.55 92.84 92.41 92.55 92.55 92.5 92.84
100 92.27 92.93 92.36 92.55 92.84 92.41 92.55 92.55 92.5 92.84
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