
Psychiatry Research 333 (2024) 115752

Available online 23 January 2024
0165-1781/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Navigating the semantic space: Unraveling the structure of meaning in 
psychosis using different computational language models 

Rui He a,*, Claudio Palominos a, Han Zhang a, Maria Francisca Alonso-Sánchez b, 
Lena Palaniyappan c,d,e, Wolfram Hinzen a,f 

a Department of Translation & Language Sciences, Universitat Pompeu Fabra, Carrer Roc Boronat, 138, Barcelona, 08018, Spain 
b CIDCL, Escuela de Fonoaudiología, Universidad de Valparaíso, Valparaíso, Chile 
c Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada 
d Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada 
e Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada 
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A B S T R A C T   

Speech in psychosis has long been ascribed as involving ‘loosening of associations’. We pursued the aim to 
elucidate its underlying cognitive mechanisms by analysing picture descriptions from 94 subjects (29 healthy 
controls, 18 participants at clinical high risk, 29 with first-episode psychosis, and 18 with chronic schizophrenia), 
using five language models with different computational architectures: FastText, which represents meaning non- 
contextually/statically; BERT, which represents contextual meaning sensitive to grammar and context; Infersent 
and SBERT, which provide sentential representations; and CLIP, which evaluates speech relative to a visual 
stimulus. These models were used to quantify semantic distances crossed between successive tokens/sentences, 
and semantic perplexity indicating unexpectedness in continuations. Results showed that, among patients, se
mantic similarity increased when measured with FastText, Infersent, and SBERT, while it decreased with CLIP 
and BERT. Higher perplexity was observed in first-episode psychosis. Static semantic measures were associated 
with clinically measured impoverishment of thought and referential semantic measures with disorganization. 
These patterns indicate a shrinking conceptual semantic space as represented by static language models, which 
co-occurs with a widening in the referential semantic space as represented by contextual models. This duality 
underlines the need to separate these two forms of meaning for understanding mechanisms involved in semantic 
change in psychosis.    
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1. Introduction 

Atypical forms of discourse in psychosis have long been described 
clinically as tangentiality or incoherence (Andreasen, 1979). These were 
conceptualized early on as revealing ‘loosening of associations’ (Bleu
ler, 1911). A critical desideratum is to understand the mechanisms 
involved. In this regard, speech production inherently involves the 
integration of two very different kinds of meaning. One is lexical and 
comprises our semantic memory: our stored knowledge of the general 
meanings of words such as queen, beauty, or come. The other is gram
matical and captures specific facts or events as located at particular 
moments in time, e.g. He came here, which involves references to a 
specific person and an event as located at a particular time and place. 
Sentential units of this latter type capture thoughts, which we can share 
and evaluate as true or false based on their referential content. 

Both types of meaning exhibit principles of structural organization, 
yet these are crucially distinct. Lexical concepts are linked to each other 
through statistical associations (i.e., co-occurrences) as well as hierar
chical relations (e.g. hyponymy and hypernymy, e.g., queen → monarch), 
while the links between words as occurring as parts of a sentence are 
grammatical (e.g., subject-predicate). Both lexical-associative and 
grammatical connectivity are essential for the organization of semantic 
structure in discourse. When producing one content word after another 
in word production tasks (e.g., verbal fluency tasks requiring the 
enumeration of animals), we are retrieving them from lexical semantic 
memory one by one as we go along, e.g., mouse, cat, dog, camel, reflecting 
a ‘walk’ in conceptual space. In natural speech, on the other hand, 
interleaved between these content words is the functional structure of 
grammar, which, together with the lexical concepts themselves, yields 
sentences and thoughts encoding references to scenes, objects, and 
events. Lexical selection among concepts, and references based on them, 
have to be integrated in order for any form of coherence to arise. 

Deviance in lexical-semantic organization in psychosis has been 
previously studied psycholinguistically through the concept of anoma
lous ‘spreading of semantic activations’, often using semantic priming 
paradigms (Kuperberg et al., 2008; Pomarol-Clotet et al., 2008). Ad
vances in natural language processing, on the other hand, have paved 
the way for the use of large computational Language Models (LM) to 
study semantic organization in terms of representations of words or 
sentences as vectors, named embeddings. Distances between these vec
tors can be calculated mathematically from their cosine angle. These 
distances are interpreted as semantic similarity, based on the distribu
tional hypothesis (Baroni, 2013) that the co-occurrence patterns of a 
given word with other words captures its meaning. Static embeddings 
are those that represent each word according to the words it occurs with. 
Under such embeddings, words that occur with similar words will 
therefore get similar vectors, and they will lay in close areas in the vector 
space. Static embeddings have been adopted by the majority of previous 
computational semantic studies in psychosis (Corcoran et al., 2018; 
Corona-Hernández et al., 2022; Pauselli et al., 2018; Voppel et al., 
2021). 

However, reported diagnostic differences from such measures could 
arise from variations in superficial aspects of language organization such 
as syntactic frame selection (Yi et al., 2019) or sentence length (Hitc
zenko et al., 2021), rather than anomalies in semantic representations 
per se. There have also been inconsistencies across samples, languages, 
tasks, and processing pipelines, as revealed by several comparative 
studies (Iter et al., 2018; Just et al., 2019; Morgan et al., 2021; Parola 
et al., 2022). A specific case in point, addressed in the present study, is 
the inconsistency between repeated findings of a traditionally expected 
decrease in the mean semantic similarity between word pairs (Corcoran 
et al., 2018; Elvevåg et al., 2007; Iter et al., 2018; Morgan et al., 2021), 
and recent findings of a surprising increase in semantic similarity in two 
studies of first-episode psychosis (Alonso-Sánchez et al., 2022a; Pintos 
et al., 2022), and two studies of chronic psychosis samples (Parola et al., 
2022; Voppel et al., 2021). 

In normal connected speech, moreover, words never appear in 
isolation but form parts of grammatical structures with referential 
meaning, as illustrated above with He came here, which static semantic 
measures do not capture. Owing to their lack of sensitivity to either 
grammatical structure or extra-linguistic context, they do not capture 
particular occurrences of words within meaningful grammatical units, 
and they cannot target referential (as different from lexical-conceptual) 
meaning. This invites the utilization of contextual embeddings for 
studying semantic structure, due to their sensitivity to grammatical 
connectivity (Hill et al., 2014; Jawahar et al., 2019; Limisiewicz and 
Mareček, 2020). Both contextual and static (context-free) LMs success
fully predict brain activity in people listening to a story during fMRI 
(Anderson et al., 2021; Goldstein et al., 2023; Kumar et al., 2023; Pas
quiou et al., 2023), hence have some neurobiological validation. Yet, the 
two types of models also make partially different predictions and hence 
should be considered separately and comparatively in a study of 
meaning changes in psychosis. Previous findings using manual coding 
already support alterations not merely in conceptual but also referential 
meaning structure in psychosis samples across a range of typologically 
different languages (Çokal et al., 2022: Turkish; Çokal et al., 2018: En
glish; Palominos et al., 2023: Chilean Spanish; Sevilla et al., 2018: 
peninsular Spanish). One notable repeated finding is an increase in 
pronouns compared to other types of noun phrases in psychosis groups 
(Çokal et al., 2022; Mackinley et al., 2021; Palominos et al., 2023; Tang 
et al., 2021). Crucially, pronouns are referential devices devoid of 
essentially any lexical-conceptual meaning, with regard to which static 
models of semantic similarity are validated. Syntactic complexity, too, 
has been reported as decreasing in psychosis (Barattieri di San Pietro 
et al., 2022; Ciampelli et al., 2023; Silva et al., 2022) and could bear on 
semantic structure as assessed with embeddings. This specifically ap
plies to hierarchical syntactic complexity (the structure of phrases 
embedded in other phrases), which unlike non-hierarchical syntactical 
complexity (a linear sequence of words as measured, e.g., through sen
tence length) inherently captures complexity in meaning: the meaning 
of a complex phrase is computed from the meanings of the phrases 
embedded in it. 

Meaning should not only be considered at both the lexical and 
grammatical levels, and contextually in the light of what is said before 
and after in a narrative, but the task of picture descriptions typically 
used for speech elicitation further invites considering the descriptions 
against the picture itself, which provides the frame of reference. This 
referential dimension of meaning can be targeted through a bimodal 
vision-language model, in which the picture described and the verbal 
description itself are separately vectorized, so that the semantic distance 
between the two can be scored (Radford et al., 2021). To address these 
desiderata, our aim here was to study contextual embeddings, at both 
word and sentence levels, in conjunction with static ones, and to 
contrast traditional cosine-similarity-based semantic metrics with the 
metric of ‘perplexity’, which quantifies the semantic unexpectedness of a 
word as occurring in its grammatical context, and a metric of bimodal 
semantic similarity between descriptions and pictures. To further justify 
the interrelatedness between syntactic complexity and meaning, we 
obtained metrics of hierarchical syntactic complexity and the ratio of 
pronouns. We assessed all metrics across three different picture de
scriptions and related them to clinical measures. 

Our broad predictions were that due to grammatical organization 
being implicated in the use of contextual embeddings and differences in 
kind between meaning at the lexical and at the grammatical levels, se
mantic similarity metrics across the two types of models (static vs. 
contextual) would diverge. Perplexity in particular would increase in 
psychosis groups, indicating a loss in contextual semantic predictability, 
even if semantic similarity at the non-contextual level would increase, as 
reported in Alonso-Sánchez et al. (2022a). We also predicted an over-use 
of pronouns, and expected this overuse to impact on lexical-conceptual 
semantic similarity, as pronouns are devices lacking lexical-conceptual 
meaning. Finally, we expected hierarchical syntactic complexity to 
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correlate positively with contextual semantic models and perplexity, 
since contextual meaning depends on syntactic organization and more 
integrity in the latter (richer complexity) may enhance both semantic 
organization and predictability. 

2. Methods 

2.1. Data collection and clinical assessment 

Ninety-four native English speakers from London, Ontario, Canada 
were recruited in this study and categorized as healthy controls (HC, n =
29), clinical high-risk (CHR, n = 18), first-episode psychosis (FEP, n =
29), and chronic schizophrenia (CS, n = 18), as a part of the Tracking 
Outcomes in Psychosis (TOPSY) study (https://clinicaltrials.gov/s 
tudy/NCT02882204). Demographic data and clinical scores are shown 
in Table 1. The four groups were matched on gender and education, but 
not on age as expected, given the differences in illness stage (CHR = FEP 
= HC < CS). The FEP (Alonso-Sánchez et al., 2022b) and CHR samples 
(Jeon et al., 2021) are described in detail in our other reports focused on 
neuroimaging findings. In brief, FEP subjects had <2 weeks of lifetime 
antipsychotic exposure and in most cases were assessed in the first week 
of referral to the first-episode psychosis team. As such, the median dose 
of antipsychotic exposure, calculated by converting the various pre
scribed antipsychotic medication doses to a common equivalent on the 
basis of Defined Daily Dose (DDD) provided by the WHO Collaborating 
Centre for Drug Statistics and Methodology (https://www.whocc.no/at 
c_ddd_index_and_guidelines/guidelines/) and multiplying by the days of 
exposure to this dose, was <3 DDD-days in this sample. Only the data 
from FEP whose diagnosis remained stable (as schizophrenia, excluding 
those who had bipolar disorder or depressive psychosis) after 6 months 
of follow-up are included in this study. The CHR group included subjects 
with subthreshold psychosis (Attenuate Psychosis Syndrome or brief and 
limited intermittent psychosis (BLIPS)) as per the Brief Structured 
Interview for Psychosis-risk Syndromes (SIPS) with no prior exposure to 
antipsychotics ever in their lifetime. CS consisted of 18 subjects that 

were clinically stable on long-acting injectable medications with >3 
years since illness onset and no recorded hospitalization in the past year 
and receiving community-based care from physicians affiliated to a 
first-episode clinic (PEPP, London Ontario). Importantly, CS subjects 
(and subjects in all other groups) were recruited regardless of the status 
of disorganization/thought disorder in their prior history, which was in 
order not to bias our sample towards language-related symptomatology. 
All diagnostic assessments were reviewed using a Best Estimate Pro
cedure (Leckman et al., 1982) for clinical consensus (treating physician, 
a research psychiatrist and evaluators). All patients provided written 
informed consent as stipulated by the Research Ethics Committee of 
University of Western Ontario, London, Canada (ID 108268). 

FEP and CS subjects were assessed with the Positive and Negative 
Syndrome Scale-8 items version (PANSS), with delusions (PANSS8P1), 
conceptual disorganization (PANSS8P2), hallucinatory behavior 
(PANSS8P3), blunted affect (PANSS8N1), passive/apathetic social 
withdrawal (PANSS8N4), lack of spontaneity/flow of conversation 
(PANSS8N6), mannerisms/posturing (PANSS8G5), and unusual thought 
content (PANSS8G9) (Opler et al., 2007). CHR subjects were assessed 
with the Scale of Prodromal Symptoms (SOPS) (Miller et al., 2003) for 
three positive symptoms: delusions (SOPS-S1, equivalent to PANSS8P1), 
conceptual disorganization (SOPS-S5, equivalent to PANSS8P2), hallu
cinatory behavior (SOPS-S4, equivalent to PANSS8P3). SOPS and PANSS 
are scored with the same scale (1–7) while HC subjects were all assessed 
as 1. All subjects were asked to describe three pictures from the The
matic Apperception Test (Murray, 1943) (described in supplementary 
materials) and were given one minute for each image. During the 
speech, if any participant would finish their descriptions in less than one 
minute, the interviewer would prompt them to speak more, and if they 
were continuing beyond one minute, the interviewer would interrupt 
them. This procedure makes the quantity of speech relatively similar 
across groups. No subject was excluded for not generating sufficient 
speech, and there were not significant group differences, as indicated by 
Kruskal–Wallis test with Dwass, Steel, Critchlow and Fligner all-pairs 
comparison post-hoc tests, on the number of words and utterances (as 

Table 1 
Demographic characteristics and clinical assessment of the subjects.   

Health 
control 

Clinical high 
risk 

First-episode 
psychosis 

Chronic 
schizophrenia 

Test Statistics p 

Number 29 18 29 18 / / / 
Age 22.00 (3.00) 21.00 (5.75) 22.00 (4.00) 27.00 (6.50) Kruskal–Wallis 19.362 0.000*** 
Sex 24.14 % 22.22 % 27.59 % 27.78 % Pearson’s χ2 test 0.245 0.970 
Education 68.97 % 38.89 % 51.72 % 38.89 % Pearson’s χ2 test 6.231 0.101 
SES (parental) 3.0 (2.0) 4.0 (0.0) 4.0 (3.0) 4.0 (2.0) Kendall’s 

correlation 
0.079 0.402 

PANSS Missing 0 2 0 2 / / / 
P1: Delusions 1.00 (0.00) 1.42 (2.25) 5.00 (2.00) 2.50 (3.00) Kruskal–Wallis 58.095 0.000*** 
P2: Conceptual disorganization 1.00 (0.00) 0.00 (0.55) 3.00 (3.00) 1.00 (1.00) Kruskal–Wallis 44.655 0.000*** 
P3: Hallucinatory behavior 1.00 (0.00) 3.00 (2.88) 5.00 (1.00) 3.00 (3.25) Kruskal–Wallis 44.534 0.000*** 
N1: Blunted affect 1.00 (0.00) / 2.00 (3.00) 1.00 (1.00) Kruskal–Wallis 19.719 0.000*** 
N4: Passive/apathetic social 

withdrawal 
1.00 (0.00) / 3.00 (4.00) 1.00 (1.00) Kruskal–Wallis 27.929 0.000*** 

N6: Lack of spontaneity and flow of  
conversation 

1.00 (0.00) / 1.00 (2.00) 1.00 (0.00) Kruskal–Wallis 17.560 0.000*** 

G5: Mannerisms & posturing 1.00 (0.00) / 1.00 (2.00) 1.00 (0.25) Kruskal–Wallis 14.860 0.001*** 
G9: Unusual thought content 1.00 (0.00) / 4.00 (2.00) 1.50 (1.25) Kruskal–Wallis 44.792 0.000*** 
PANSSP 3.00 (0.00) 4.50 (3.21) 12.00 (4.00) 7.50 (5.25) Kruskal–Wallis 61.398 0.000*** 
PANSSN 3.00 (0.00) / 7.00 (6.00) 3.50 (1.75) Kruskal–Wallis 32.979 0.000*** 
PANSSG 2.00 (0.00) / 5.00 (4.00) 3.00 (2.00) Kruskal–Wallis 44.972 0.000*** 
PANSSTOTAL 8.00 (0.00) / 25.00 (9.00) 14.50 (9.50) Kruskal–Wallis 58.585 0.000*** 
TLI Missing 2 0 0 1 / / / 
Impoverishment of thought 0.00 (0.25) 0.50 (0.69) 0.25 (0.75) 0.25 (0.75) Kruskal–Wallis 15.160 0.002** 
Disorganization in thought 0.00 (0.25) 0.62 (0.69) 1.00 (1.25) 0.00 (0.50) Kruskal–Wallis 18.437 0.000*** 

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Age was indicated by the median (Interquartile range, IQR). There was 1 missing value of age in CS, which were fulfilled 
with the mean age of the CS group. Missing values in other variables were excluded in the analysis. Sex was represented by the percentage of female subjects. Education 
was indicated by the percentage of subjects with over 12 years of education. Socioeconomic status (SES), PANSS scores, and the TLI scores were represented by the 
median (IQR). CHR group did not take PANSS test but SOPS where we obtained the scores for the three positive items but not for negative or general items so CHR was 
excluded for PANSS negative and PANSS general. 

R. He et al.                                                                                                                                                                                                                                       

https://clinicaltrials.gov/study/NCT02882204
https://clinicaltrials.gov/study/NCT02882204
https://www.whocc.no/atc_ddd_index_and_guidelines/guidelines/
https://www.whocc.no/atc_ddd_index_and_guidelines/guidelines/


Psychiatry Research 333 (2024) 115752

4

shown in supplementary materials). The recorded speech was tran
scribed by research assistants. Elicited speech was scored using the 
Thought Language Index (TLI), with scores for impoverishment of 
thought and for disorganization in thinking (Liddle et al., 2002). TLI 
global scores for three pictures were summed up per subject. 

2.2. Semantic similarity analysis using four LMs 

Our language-analytic pipeline is shown in Fig. 1. Every transcript 
was first segmented into meaningful units (u1, u2, ⋯, un), which were 
encoded by LMs into embeddings (e1, e2, ⋯, en), with n denoting the 
number of meaningful units. Meaningful units could either be words/ 
tokens or utterances. Utterances were defined as syntactically inde
pendent units (neither necessarily nor sufficiently being clauses) 
providing new information to the discourse (Chapin et al., 2022; Çokal 
et al., 2022). Four of the authors worked together to manually divide the 
transcripts into utterances, with one single researcher with experiences 
in utterance division validating all divisions. Globally, in a segmented 
and embedded transcript U = (e1,e2,⋯,en), semantic similarity of U was 
defined as the averaged cosine similarity of every successive pairs, as 
shown in Eq. (1): 

Similarity :=
1

n − 1
∑n− 1

i=1
cosine similarity(ei, ei+1) (1) 

First, transcripts were segmented into tokens using spaCy (3.4.2, 
en_core_web_sm, Montani et al., 2022). After removing all punctuations 
and stopwords (available in supplementary materials, nearly all pro
nouns were included as stopwords), the FastText model (Grave et al., 
2018), pretrained on English data, was applied to encode all tokens. 
FastText is an LM returning a static embedding for each token regardless 
of the context. LMs like BERT (Devlin et al., 2019), by contrast, deliver 
contextual embeddings which are thought to capture aspects of hierar
chical syntactic complexity, at certain layers of the transformer network 
(Jawahar et al., 2019). At the token level, the English uncased BERT was 
applied to tokenize the transcript and encode each token into an 
embedding. At utterance-level, two sentence embedding models were 
applied to encode each utterance with stopwords retained but punctu
ations removed. One of them was the FastText-based Infersent model 
(Conneau et al., 2017), and the other was SBERT pretrained on the 
pooled outputs from token-level contextual LMs to derive semantically 
meaningful sentence embeddings (Reimers and Gurevych, 2019). 
Infersent and SBERT were more reliable than averaged word-level em
beddings for unsupervised sentence similarity evaluation (Sun et al., 
2022). These two models brought our analyses from word/token level to 
utterance level for both context-free embeddings and contextual em
beddings. Infersent encodes sentences with the bidirectional long 
short-term memory network (BiLSTM) structure, while SBERT replaced 
this with the Transformers-based encoder from BERT. BERT encoder 
captures the hierarchical syntactic structure of language (Jawahar et al., 
2019), with a strong ability to learn long-term dependencies (Devlin 
et al., 2019), much better than classical LSTM and equivalent to an LSTM 
variant with inductive bias on syntax (Pei et al., 2020). SBERT is thus 
expected to encode more contextual information from the utterances 
than Infersent. However, despite operating at sentence-level with 
certain architectures used to embed contexts, both of these two were 
considered here to be unlike BERT in capturing little hierarchical 
grammar, thereby serving more to capture conceptual meaning as 
different from the contextual meaning of the utterance. This was mainly 
based on the following reasons: (1) The sentence embeddings are 
generated either by average- (SBERT) or max- (Infersent) pooling the 
token embeddings, which flattens the hierarchy of sentence structure. 
This point was independently supported in our results based on the lack 
of a predictive effect of syntactic depth on the semantic similarity scores 
derived from these two models (see results); (2) The embedding process 
for utterances is isolated, neglecting any contextual information from 

adjacent utterances; (3) During the supervised training of these models, 
the similarity labels are exclusively assigned based on the inherent se
mantic relationships between individual utterances, disregarding any 
contextual influences or dependencies. 

Overall, this fourfold semantic similarity analysis covers both 
decontextualized lexical meaning and contextual referential meaning at 
the level of the meaningful utterance, where thoughts are expressed 
using grammar. 

2.3. Semantic perplexity analysis 

In addition to semantic similarity metrics, we assessed perplexity 
(PPL) of an utterance as a metric of the unexpectedness of its comprising 
units. PPL has been found to be a reliable speech coherence marker 
sensitive to cognitive decline, capturing meaning at the discourse level 
(Colla et al., 2022). Although PPL is not defined for masked LMs like 
BERT, a related metric, pseudo-perplexity (PPPL), has been proposed 
using a similar mathematical computation (Salazar et al., 2020). 
Formally, in a tokenized utterance U := (t1, t2, …, tn), we defined the 
probability of token ti as the log conditional probability of the utterance 
without this token U\i := (t1, …, ti− 1, ti+1, …, tn). The perplexity of the 
utterance was then defined as the exponential value of the negative 
mean value of the pseudo-loglikelihood scores provided by summing the 
conditional log probabilities of all tokens in the utterance, as shown by 
Eq. (2): 

perplexity(Ut) := Exp

(

−
1
n
∑n

i=0
logPLM(ti|U\i)

)

(2) 

We computed the PPPL scores for every utterance in the transcript 
using BERT, and averaged them to obtain a single PPPL score for every 
subject. 

2.4. Multimodal similarity analysis: from image to text 

As a final LM, we used CLIP (Radford et al., 2021), a vision-language 
pretrained model designed to encode both an image and a text and to 
quantify the similarity between them. For each subject, we computed 
the cosine similarity between an image and every utterance describing it 
using CLIP with visual transformer (ViT-B/32) as its backbone, and 
averaged the image-utterance similarity scores. 

2.5. Syntactic measures with impact on semantic structure 

To shed light on the relationship between elements of referential 
structure and conceptually based semantic evaluations, we computed 
the ratio of pronouns and hierarchical syntactic complexity. The 
required part-of-speech tagging was carried out with the identical model 
from spaCy. For hierarchical syntactic complexity, a constituency parser 
(benepar_en3) (Kitaev and Klein, 2018) was utilized with spaCy. Punc
tuations were kept for parsing the trees but removed from the trees for 
sequential analysis. The constituency parse was represented as a 
directed acyclic graph with the source (sentence) node at top repre
senting the whole utterance, target nodes at bottom representing the 
part-of-speech tags of every token, and stem nodes in between repre
senting phrases. Though some previous studies of syntax in psychosis 
such as Ciampelli et al. (2023) have constructed syntax trees in Greibach 
Normal Form, allowing a parent node to have more than two children 
nodes, we converted the Greibach Normal Form to Chomsky Normal 
Form, which allows a parent node to have at most two children nodes, 
using the nltk package. For instance, in Fig. 2(A) and (B) shows the 
syntactic structure of a noun phrase, the red apple, in the Greibach and 
Chomsky normal forms, respectively. As illustrated here, the omission of 
intermediate phrasal structures, such as the internal NP structure in this 
case, abstracts from some layers of the hierarchical syntactic complexity. 
In our analysis, forms of tokens were not included in syntactic trees, as 
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Fig. 1. Workflow for language analysis pipelines, with (A) transcript preprocess and encoding, (B) semantic analysis for successive textual similarity, image-text 
similarity, and textual perplexity, and (C) syntactic analysis. 

R. He et al.                                                                                                                                                                                                                                       



Psychiatry Research 333 (2024) 115752

6

shown in Fig. 2(C). Syntactic depth was defined as the maximum 
number of edges that need to be traversed to reach from the source node 
(sentence node) to the furthest target node (token node). For example, in 
Fig. 2(C), the depth of syntax tree is five, from S to NN (woman) or DT 
(a). 

Repetitions and other dysfluencies have been recognized in schizo
phrenia (Çokal et al., 2019) and were also observed in our study (see 
results). Repeated expressions could exert a substantial influence on 
semantic similarity (in the direction of high semantic similarities). To 
control for this, we used the moving-averaged type-token-ratio 
(MATTR) with a window size of 25 (Covington and McFall, 2010) as a 
proxy for repetition, as more repetitions are expected to lead to less 
unique words and thus lower MATTR. 

2.6. Group comparisons 

Each participant described three pictures, hence there were three 
correlated observations of language measures per participant. General
ized estimating equation (GEE) models were applied to estimate 
population-averaged effects, with Gaussian response distribution, 
exchangeable correlation structure, and log link function. Language 
measures served as response variables while age and group as inde
pendent variables (with HC as the reference category). Furthermore, for 
comparisons within the clinical groups, we used the same method but set 
FEP as the reference category, with all HC data excluded. MATTR was 
defined as an offset variable if there was a significant relationship be
tween MATTR and the response linguistic variable (as described in 2.7). 
If there was no significant relationship, MATTR was not included in the 
GEE model. False discovery rate (FDR) was applied to correct p values 
for each pathological group within two domains, semantic and syntactic, 
and is reported as q values in this paper. To better fit the GEE model, we 
first log-transformed the BERT PPPL scores and syntactic depth to bal
ance distribution. BERT PPPL scores were further Box–Cox transformed 
to fit the Gaussian distribution (Box and Cox, 1964). Deviance 
goodness-of-fit test was applied to assess how well the GEE models fit the 
observed data. 

2.7. Relationship among semantic measures, syntactic measures and 
clinical scores 

Identical GEE models were applied to predict semantic features from 
syntactic features, to explore their association. All subjects were 
included in the analysis with group treated as covariate in the GEE 
models to regress out the effect of group variance. Furthermore, to 
investigate which clinical aspect of cognition these language measures 
relate to, generalized linear models (GLM) were applied to predict, from 
task-averaged linguistic measures: (1) the score of each PANSS items. 
For CHR subjects, the positive items were represented by corresponding 
SOPS scores; (2) PANSS positive (PANSSP, P1+P2+P3), negative 
(PANSSN, N1+N4+N6), general (PANSSG, G5+G9), and total scores; 
and (3) two scores from Thought and Language Index (TLI), the global 
impoverishment of thought score, and the global disorganization in 
thought score. PANSS scores fit the Tweedie distribution while TLI 
scores fit the Gaussian distribution. Domain-wise correction for p values 
with FDR for each pathological group was applied. The PPPL scores and 
syntactic depth were not transformed here and deviance goodness-of-fit 
test was applied to assess how well the GLM models fit the observed 
data. 

3. Results 

3.1. Group differences 

All GEE and GLM models in this study fit the data well (deviance 
goodness-of-fit: all p > 0.05). As shown in Table 2, compared to HC, 
static semantic similarity was higher in CHR (FastText) as well as FEP 
groups (FastText, Infersent, SBERT). CLIP-based multimodal (picture- 
description) alignment was lower in both of these groups. Only FEP had 
higher contextual unexpectedness (PPPL scores). The CS group had no 
notable aberrations that survived our a priori statistical threshold. Sig
nificant changes in syntactic measures were observed only in FEP, with 
lower MATTR indicating more repetition, a higher ratio of pronouns, 
and greater syntactic depth. MATTR was included in the GEE models for 
the sematic similarity scores from Infersent and SBERT, the PPPL scores, 
and syntactic depth, due to significant predictive effects observed (see 

Fig. 2. Examples of constituency parsing. Tokens in dotted boxes are only for demonstration and excluded in actual analyses. (A) Syntactic structure of The red apple 
in Greibach Normal Form; (B) Syntactic structure of The red apple in Chomsky Normal Form; (C) Syntactic structure of a real example from our data I see a man and 
woman. The meanings of node labels appearing in the trees: S: sentence, NP: noun phrase, VP: verb phrase, DT: determiner, JJ: adjective, NN: noun (singular or mass), 
PRP: personal pronoun, VBP: verb (non-3rd person singular present), CC: coordinating conjunction. Nodei |〈Nodei− 0, Nodei− 1〉 refers to the phrase Nodei being 
comprised of its two child nodes. 
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Methods and Fig. 3). As shown in Table 3, with all HC data excluded, 
compared to FEP, the CHR group showed no changes that survived 
thresholds, while the CS group had lower semantic similarity based on 
Infersent and a lower ratio of pronouns. 

3.2. Predicting semantic variables using syntactic variables 

In line with predictions, a relation transpired between syntactic 
measures (the pronoun ratio and syntactic complexity), on the one hand, 
and semantic similarity and perplexity measures, on the other (see 
Fig. 3). In particular, higher syntactic depth predicted lower BERT se
mantic similarity scores and less perplexity. More pronouns predicted 
higher semantic similarity scores from all unimodal LMs except BERT, 
despite a trend-level relationship between more pronouns and lower 

semantic similarity with BERT (q = 0.073). They also predicted 
increased perplexity and decreased semantic similarity with the bimodal 
CLIP model. 

3.3. Relations to clinical scores 

As shown in Fig. 4, the general syndromic changes as measured by 
the total PANSS scores was only predicted by perplexity, with higher 
perplexity predicting higher burden of unusual thought content and 
delusions. In addition, lower CLIP scores predicted higher conceptual 
disorganization while higher context-free word-based semantic simi
larity (from FastText) predicted increasing lack of spontaneity and flow 
of conversation. Lower syntactic depth predicted worse passive/ 
apathetic social withdrawal. As for the TLI scores, increasing 

Table 2 
Comparisons of the three pathological groups to health controls on language measures.  

Group Domain Feature B se z p q 

CHR Semantics FastText 0.085 0.030 2.876 0.004** 0.012*   
Infersent 0.074 0.040 1.873 0.061 0.122   
SBERT 0.031 0.046 0.659 0.510 0.510   
BERT 0.013 0.014 0.903 0.367 0.510   
CLIP − 0.020 0.006 − 3.150 0.002** 0.010*   
BERT_pppl 0.022 0.030 0.728 0.467 0.510  

Syntax MATTR − 0.016 0.013 − 1.210 0.226 0.526   
PRON 0.048 0.052 0.934 0.350 0.526   
Depth 0.004 0.021 0.178 0.859 0.859 

FEP Semantics FastText 0.120 0.032 3.741 0.000*** 0.001***   
Infersent 0.153 0.034 4.538 0.000*** 0.000***   
SBERT 0.092 0.040 2.281 0.023* 0.034*   
BERT − 0.024 0.016 − 1.450 0.147 0.147   
CLIP − 0.016 0.008 − 2.157 0.031* 0.037*   
BERT_pppl 0.059 0.024 2.481 0.013* 0.026*  

Syntax MATTR − 0.030 0.015 − 2.007 0.045* 0.045*   
PRON 0.155 0.043 3.626 0.000*** 0.001***   
Depth 0.036 0.018 2.024 0.043* 0.045* 

CS Semantics FastText 0.042 0.025 1.714 0.087 0.260   
Infersent 0.023 0.037 0.631 0.528 0.622   
SBERT 0.024 0.049 0.493 0.622 0.622   
BERT − 0.023 0.019 − 1.180 0.238 0.476   
CLIP − 0.007 0.007 − 0.896 0.370 0.555   
BERT_pppl 0.058 0.029 2.016 0.044* 0.260  

Syntax MATTR − 0.026 0.013 − 2.062 0.039* 0.118   
PRON − 0.008 0.053 − 0.145 0.885 0.885   
Depth 0.021 0.020 1.042 0.297 0.446 

Note: *** p < 0.001, ** p < 0.01, * p < 0.05. HC is set as the reference category. We only reported the coefficient (B), standard error (se), z score (z), p values before 
correction (p), and p values after correction (q) for every group here to make the table concise, with the complete table of results available in supplementary materials. 
Semantics: semantic similarity based on five language models and the perplexity scores based on BERT. Syntax: moving-window averaged type token ratio (MATTR), 
ratio of pronouns (PRON), syntactic depth (Depth). Same below. 

Fig. 3. *** p < 0.001, ** p < 0.01, * p < 0.05. Prediction of semantic measures using syntactic measures. Blue squares indicated positive effects while the green 
squares indicated negative effects. Displayed numbers represent z scores. The larger the z score, the denser the color. 
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impoverishment of thought was predicted by higher semantic similarity 
measured with FastText and Infersent and higher MATTR. More disor
ganization in thought was predicted by lower CLIP scores and a higher 
ratio of pronouns. 

4. Discussion 

The aim of this study was to use both context-free and contextual 
LMs to expound the organization of meaning in psychosis at two 
different levels of linguistic organization, lexical and grammatical, 
unimodally and bimodally, and the possible impact on semantic mea
sures of three factors: the ratio of pronouns, lexical diversity (MATTR), 
and hierarchical syntactic complexity (syntactic depth). The main 
findings can be summarized as follows: (a) In early psychosis (CHR and 
FEP), there is an increase in static semantic similarity that relates to 
impoverished thinking; (b) in acute stages, i.e. FEP, this is accompanied 
by insignificantly reduced context-dependent similarity (both the 
context from prior utterances and the ground truth from a different 
modality) and significantly more semantic uncertainty as measured by 
perplexity, which related to disorganized thinking, unusual thought 
content, and delusions; (c) in the stable state of chronic established 
schizophrenia (CS), neither of these deficits are apparent; (d) semantic 
metrics associate with syntactic factors. 

Use of computational language models in psychosis dates back to 
pioneering work by Elvevåg et al. (2007), who used Latent Semantic 
Analysis (LSA) to quantify the ‘coherence’ of a text via semantic simi
larity. Ever since, numerous studies have pursued a similar conceptu
alization of semantic similarity as measuring ‘coherence’, and of 
decreased semantic similarity as relating to formal thought disorder 
(FTD). In line with this, decreases in mean semantic similarity in both 
psychosis and high-risk samples have been expected and widely re
ported, in studies that used static embeddings such as those produced by 
LSA (Bedi et al., 2015; Corcoran et al., 2018) or Word2Vec (Figuer
oa-Barra et al., 2022; Iter et al., 2018; Morgan et al., 2021), or else 
contextual ones such as those derived from BERT (Tang et al., 2021). 
Conversely, there is the divergent finding of an unsuspected increase in 
semantic similarity using context-free embeddings from GloVe (Alon
so-Sánchez et al., 2022a), which we replicated here using FastText. 
Given the conceptualization of these metrics as measuring coherence 
and FTD, higher semantic similarity is a surprise. Our starting point 
here, however, was different and focused on the organization of the 
semantic space, which is what the models represent, and its relation to 
linguistic structure. Under the de-grammaticalized vision of meaning 

captured by static embeddings, higher semantic similarity indicates 
that, when producing word after word, people with FEP are navigating 
within a more constrained semantic space, where distances travelled 
between lexical concepts are reduced. The same phenomenon is seen in 
the same group on the sentential level using sentential embeddings from 
Infersent and SBERT, which encode more formal syntactic information 
than bag-of-word models (e.g., FastText), but less than BERT (Chrupała 
and Alishahi, 2019), likely because the hierarchical syntactic structures 
are flattened in the pooling operation used in these models. Static 
models, however, are only selective windows, leaving much of the 
complexity aside, and when moving to the grammatical level using 
contextual embeddings, a very different pattern emerges: lower se
mantic similarity with the contextual model BERT, correlating with hi
erarchical syntactic complexity, and with the bimodal model CLIP, 
which evaluates speech against the referential context; accompanied by 
increasing perplexity with regards to how words appear in grammati
cally structured utterances. 

The view of semantic similarity as measuring coherence therefore 
falls short: rather there is a dual pattern of increased context-free but 
reduced contextual semantic similarity. Put differently, there is a 
tightening of the lexical-conceptual semantic space (as indexed by 
reduced distances between lexical representations), but apparent loos
ening when words are considered in their grammatical context using 
BERT. The negative association, in both the cases of semantic similarity 
and perplexity, between this loosening and syntactic complexity is 
telling, pointing to a specific role of grammar in the organization of 
meaning and suggesting a lesser grip of grammar on meaning at the 
referential level relevant to cohesive discourse. It appears as if perplexity 
and semantic expansion take place when hierarchical syntax cannot 
retain its complexity, suggesting that grammar, when intact, could act as 
a mechanism of semantic control. 

The increase in pronouns seen in FEP echoes similar findings in other 
samples and languages, and contributes to profiling a shift in the 
referential usage of language through grammar. Pronouns encode no 
descriptive lexical-conceptual content whatsoever, i.e., they do not 
represent their referents through a lexical concept that needs to be 
remembered and retrieved. They are in this sense purely grammatical 
devices with only a referential (but no representational) function. Why, 
then, would the increase of such ‘shortcuts’ to reference predict changes 
in the organization of the semantic space? We suggest that the answer 
lies in the fact that pronouns are deictic devices, and as such can only be 
used to pick out referents provided in the immediate speech contexts. 
They therefore do not allow to cross large semantic distances, confining 

Table 3 
Comparisons of clinical high risk and chronic schizophrenia to first-episode psychosis on language measures.  

Group Domain Feature B se z p Q 

Clinical Semantics FastText − 0.041 0.045 − 0.913 0.361 0.434 
High Risk  Infersent − 0.080 0.047 − 1.716 0.086 0.258   

SBERT − 0.063 0.054 − 1.163 0.245 0.368   
BERT 0.036 0.016 2.257 0.024* 0.144   
CLIP − 0.004 0.008 − 0.450 0.653 0.653   
BERT_pppl − 0.036 0.028 − 1.293 0.196 0.368  

Syntax MATTR 0.015 0.018 0.831 0.406 0.406   
PRON − 0.106 0.054 − 1.972 0.049* 0.146   
Depth − 0.030 0.022 − 1.401 0.161 0.242 

Chronic Semantics FastText − 0.069 0.038 − 1.813 0.070 0.209 
Schizophrenia  Infersent − 0.131 0.045 − 2.929 0.003** 0.020*   

SBERT − 0.082 0.057 − 1.438 0.150 0.301   
BERT − 0.003 0.021 − 0.152 0.879 0.908   
CLIP 0.006 0.009 0.634 0.526 0.790   
BERT_pppl − 0.003 0.026 − 0.115 0.908 0.908  

Syntax MATTR 0.005 0.017 0.304 0.761 0.830   
PRON − 0.141 0.054 − 2.612 0.009** 0.027*   
Depth − 0.005 0.022 − 0.215 0.830 0.830 

Note: *** p < 0.001, ** p < 0.01, * p < 0.05. First-episode psychosis is set as the reference category. We only reported the coefficient (B), standard error (se), z score (z), 
p values before correction (p), and p values after correction (q) for every group here to make the table concise, with the complete table of results available in sup
plementary materials. 
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us to a space already spanned by the concepts of the previous discourse 
or else the immediate non-linguistic context (such as the picture). As 
purely referential devices failing to represent the object of reference 
through some descriptive feature, pronouns thus bypass the need for 
further conceptual-semantic processing. Based on this it is natural to 
expect that an increase in the pronoun ratio is related, or an overt 
expression of, a mechanism affecting the density of the `packing’ of the 
semantic space. 

The new concept of a shrinking conceptual-semantic space should be 
considered in a broader (neuro-)biological context. In most biological 
systems, the notion of clustering (connectedness to the neighborhood) is 
balanced with the concept of integration (reaching out to elements at 

greater distances), with a ‘small world’ topological organization being 
the consequence of balancing these two (Lord et al., 2017). From this 
perspective, the apparent loss of semantic relatedness underlying the 
construct of ‘loosening associations’ could arise from an imbalance be
tween integration (context-driven link between seemingly unrelated 
words) and segregation (clustering among related words) of concepts in 
schizophrenia. In our model and data, it is the lexical-conceptual space 
that tightens (comparable to higher segregation), while referential 
meaning as carried by the grammatical level loosens (comparable to 
reduced integration), which is in line with numerous studies of ‘refer
ential anomalies’ in psychosis (Çokal et al., 2018; Rochester and Martin, 
1979; Sevilla et al., 2018). 

Fig. 4. *** p < 0.001, ** p < 0.01, * p < 0.05. Prediction of PANSS and TLI scores using language measures. Blue squares indicated positive effects while the green 
squares indicated negative effects. Displayed numbers represent z scores. The larger the z score, the denser the color. 
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Changes in semantic similarity have traditionally not only been 
conceptualized as measures of ‘coherence’ but also as measures of FTD. 
Associations with clinical measures of FTD have been inconsistent 
(Parola et al., 2022), however, and some studies have reported a lack of 
correlation with FTD scores based on the decreases (Tang et al., 2021) or 
increases (Alonso-Sánchez et al., 2022a) in semantic similarity. In the 
present study, impoverishment of thought was predicted by an increase 
in similarity scores from static embeddings, as well as lower lexical 
richness (MATTR), both of which resonate with the idea of a deflating 
lexical-conceptual semantic space. In turn, disorganization in thought, 
reflecting looseness and peculiar language usage, was predicted by two 
language measures on the side of referential-grammatical meaning, 
namely lower CLIP-based similarity and overuse of pronouns. These 
correlations are independent evidence for the need to distinguish be
tween conceptual and referential semantics, and the clinical significance 
of this distinction. Disorganization and impoverishment are thought to 
be orthogonal phenomena (Liddle et al., 2002). They also further sup
port our previous argument that deflation in conceptual semantic space 
as evidenced by measures like FastText similarity can live in harmony 
with the expansion in referential semantic space as evidenced by mea
sures like CLIP similarity, with both these aspects jointly constituting 
‘loosening of associations’. In line with this idea, PPPL predicted the 
overall worsening of the symptoms, as well as delusions and unusual 
thought content, while CLIP-based similarity predicted conceptual 
disorganization. These two language measures, due to their relationship 
with the positive symptoms, could be considered as potential markers 
for state changes during the disease course. 

4.1. Strengths and limitations 

To the best of our knowledge, this is the first study that compara
tively examines semantic changes in psychosis by utilizing different LMs 
to differentiate conceptual meanings and grammar-mediated referential 
meanings. Additionally, it is the first study to explore the significance of 
CLIP scores and perplexity metrics in assessing semantic changes in 
psychosis. Another strength lies in the fact that the FEP group involved 
was drug-naïve, while the CS group was stable with low PANSS and TLI 
scores and years of medication. It is also noteworthy that our study had a 
relatively small sample size, particularly for CHR and CS, with a number 
of different analyses. In addition, we did not assess IQ formally but one 
of our exclusion criteria was having a diagnosis of Intellectual Disability. 
This effectively restricted the range of variations in verbal IQ. Lower IQ 
is seen as a feature of schizophrenia (Kremen et al., 2001), match
ing/controlling for which will reduce the variance related to the illness 
per se in case-control studies. Future work needs to explore whether 
semantic structural changes would differ under alternative conditions, 
such as free conversational speech. Subsequent investigations should 
aim to validate our findings on a larger dataset, employing speech eli
cited under various conditions. 
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